МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный технический университет» в городе Борисоглебске

УТВЕРЖДАЮ Директор филиала /В.В. Григораш/ 31 августа 2021 г

РАБОЧАЯ ПРОГРАММА дисциплины

«Моделирование информационных систем в дизайне»

Направление подготовки <u>09.03.02 Информационные системы и</u> технологии

Профиль Информационные технологии в дизайне

Квалификация выпускника бакалавр

Нормативный период обучения 4 г 11 м

Форма обучения заочная

Год начала подготовки 2019

Автор программы

Заведующий кафедрой

естественнонаучных дисциплин

Л.И. Матвеева

Руководитель ОПОП Спор

Е.А. Позднова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цели освоения дисциплины «Моделирование информационных систем в дизайне» заключаются в получении представления об основных принципах, методах и инструментальных средствах информационного дизайна, в том числе применительно к таким задачам как верстка печатной продукции, проектирование и разработка веб-узлов, прототипирование интерфейсов программных продуктов.

Задачи освоения дисциплины

- Изучение принципов построения информационных моделей сложных систем, приемов формулирования на них задач и методов их решения.
- Формирование умений использовать на практике математический аппарат, принципы и методы компьютерного решения сложных научнотехнических задач получения, хранения и переработки информации.
- Формирование навыков использования технологии, позволяющей описать сложные системы и явления в природе и обществе при решении современных и перспективных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Моделирование информационных систем в дизайне» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору), блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Моделирование информационных систем в дизайне» направлен на формирование следующих компетенций:

- ПК-1 Способен осуществлять проектирование графического дизайна интерфейса на основе определения стиля и визуализации данных для различных прикладных областей;
- ПК-2 Способен осуществлять проектирование информационных ресурсов для различных прикладных областей.

Компетенция	Результаты обучения, характеризующие
	сформированность компетенции
ПК-1	знать современные методы и способы трехмерного моделирования
	уметь рационально и обосновано подбирать методы и способы трехмерного моделирования, программное и аппаратное обеспечение для различных решаемых задач;
	владеть практическими навыками цифрового проектирования;
ПК-2	знать теоретические сведения о существующих и перспективных методах и принципах создания анимации; область использования анимационного дизайна и основные направления развития.
	уметь использовать самостоятельный поиск и анализ информациидля выбора прототипа будущего решения анимационного дизайна.
	владеть опытом вариантного проектирования с применениемразличных программных продуктов.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Моделирование информационных систем в дизайне» составляет 3 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Заочная форма обучения

Вид учебной работы		Всего	Семестры
Bing y rection pacetisi		часов	10
Аудиторные занятия (всего)			
Аудиторные занятия (всего)		28	28
В том числе:			
Лекции		12	12
Практические занятия (ПЗ)			
Лабораторные работы (ЛР)		16	16
Самостоятельная работа		76	76
Курсовой проект(работа) (нет)		-	-
Контрольная работа (нет)		-	-
Вид промежуточной аттестации (зачет с		4	4
оценкой)			
Общая трудоемкость	нас	108	108
3	ач. ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

заочная форма обучения

No	Наименование темы	Содержание раздела	Лекц	Лаб.	CPC	Bce
Π/Π				зан.		го,
						час
1	Принципы трехмерного моделирования	. Интерфейс 3ds max, Моделирование сложных объектов средствами Editable Poly, Использование модификаторов с геометрическими объектами, Работа с Spline. Моделирование на основе сплайнов.	4	5	25	34
2	Принципы создания анимации	Создание простейшей анимации в 3d max, Анимация объектов с помощью костей, Анимация мимики, Анимация частиц	4	5	25	34
3	Использование трехмерных анимированных моделей в прикладном дизайне	Использование трехмерной графики для создания полиграфической продукции, Моделирование и анимация промышленных и архитектурных объектов в 3d max, Создание видео в 3d max	4	6	26	36
	1	Итого	12	16	76	104

5.2 Перечень лабораторных работ

Лабораторная работа №1 Работа с примитивами в 3ds max Лабораторная работа №2 Моделирование сложных форм Лабораторная работа №3 Использование 2d форм в трехмерные графики Лабораторная работа №4 Работа с модификаторами Лабораторная работа №5 Работа с материалами и текстурами в 3ds max Лабораторная работа №6 Освещение в 3ds max

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Учебным планом по дисциплине «Моделирование информационных систем в дизайне» не предусмотрено выполнение курсовых проектов (работ) и контрольной работы (контрольных работ) в 10 семестре.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать современные методы и способы трехмерного моделирования	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь рационально и обосновано подбирать методы и способы трехмерного моделирования, программное и аппаратное обеспечение для различных решаемых задач;	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть практическими навыками цифрового проектирования;	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

знать теоретические сведения о существующих и перспективных методах и принципах создания анимации; область использования анимационного дизайна и основные направления	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
развития. уметь использовать самостоятельный поиск и анализ информациидля выбора прототипа будущего решения анимационного дизайна.	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
владеть опытом вариантного проектирования с применениемразличных программных продуктов.	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 10 семестре для заочной формы обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты обучения,	Критери	Отлично	Хорошо	Удовл	Неудовл
	характеризующие сформированность компетенции	и оценива ния				
	знать современные методы и способы трехмерного моделирования	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	уметь рационально и обосновано подбирать методы и способы трехмерного моделирования, программное и аппаратное обеспечение для различных решаемых задач;	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

	владеть	Тест	Выполнение	Выполнение	Выполнение	В тесте
	практическими навыками цифрового проектирования;		теста на 90- 100%	теста на 80-90%	теста на 70- 80%	менее 70% правильных ответов
ПК-2		Выполн ение лабора торных работ	Выполнение лабораторных на 90-100%	Выполнение лабораторных на 80-90%	Выполнение лабораторных на 70-80%	Менее 70% лабораторны х работ реализовано
	самостоятельный поиск и анализ	Выполн ение лабора торных работ	Выполнение лабораторных на 90-100%	Выполнение лабораторных на 80-90%	Выполнение лабораторных на 70-80%	Менее 70% лабораторны х работ реализовано
	владеть опытом вариантного проектирования с применением различных программных продуктов.	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

$N_{\underline{0}}$	Тестовый вопрос				
1	Без чего возможно получение 3d изображения? - Рендер;				
	- печать; - моделирование.				
2	Что не включает в себя пространствомоделирования? - Материал - источник света; - камера; - среда.				
3	Какой технологии рендеринга не существует? - Y-буфер; - трассировка лучей; - глобальное освещение.				

4	С помощью чего производятся основные построения3d моделей?
	- Сплайн;
	- точки;
	- отрезки.
5	Каких кривых Безье не существует?
	- Кубических;
	- высших степеней;
	- низших степеней.
6	Какие бывают алгоритмы отсечения?
	- Двумерные;
	- трехмерные;
	- простые.
7	Что такое моделирование?
	- Создание математической модели сцены иобъектов в ней;
	- создание изображения сцены;
	- печать сцены в файл.
8	Для чего используется алгоритм плавающегогоризонта?
	- Для упрощения изображения;
	- для выравнивания горизонта на изображении;
	- для стабилизации изображения;
	- для удаления невидимых линий трехмерного
	представления функций.
9	Где используется Z - буфер??
	- В оперативной памяти;
	- в OpenGL.;
10	Что не является системой рендеринга?
	- V-Ray;
	- Brazil;
	- Maxwell Render;
	- M-Ray.
7.2	2 Примерный перечень заданий для решения стандартных задач

7.2.2 Примерный перечень заданий для решения стандартных задач

1. В каком пункте меню можно настроить формат единиц измерения?

2. Что позволяет сделать данная команда

3. С помощью какой команды можно начертить дугу?

5. Для чего предназначена эта

пиктограмма? пиктограмма

6. Для чего предназначена эта

- 7. Какими клавишами можно подтвердить команду в 3ds Max?
- 8. Какой формат файла соответствует рисунку или чертежу 3ds Max?
- 9. Какая команда позволяет замкнуть набор отрезков?
- 10. Какой пункт меню содержит команды редактирования элементов чертежа?

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Сколько окон проекции может максимально отображать программа 3ds Max?
- 2. С помощью какого инструмента изменяется размер окон проекции
- 3. Какой инструмент позволяет выделить объект по имени?
- 4. Из какого пункта меню осуществляется работа с группами объектов?
- 5. Клоны какого типа не изменяют своего вида при изменении оригинала?
- 6. Какое число форм минимально для создания объектов методом лофтинга?
- 7. Какой инструмент используется для указания пути при лофтинге?
- 8. Какой сплайн не является двумерным объектом?
- 9. Из какой закладки панели команд осуществляется создание объектов?
- 10. С помощью какого модификатора выполняется создание тел вращения?

7.2.4. Примерный перечень вопросов для подготовки к зачету

- 1 Интерфейс программы 3ds max
- 2 Основные виды отображения в 3ds max
- 3 Основы моделирования в Editable Poly
- 4 Модификаторы деформации
- 5 Модификаторы дублирующие команды Editable Poly
- 6 Вспомогательные модификаторы
- 7 Сплайны и работа с ними
- 8 Создание объектов на основе сплайнов
- 9 Модификаторы применимые к сплайнам
- 10 Объекты компоновки
- 11 Работа со слоями в 3ds max
- 12 Стандартные материалы в 3ds max
- 13 Настройка стандартного материала
- 14 Стандартные карты текстур
- 15 Наложение текстур с помощью UVW Мар
- 16 Стандартное освещение в 3ds max
- 17 Photometric lights
- 18 Настройка камер в 3ds max
- 19 Параметры визуализации

7.2.5. Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов -20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
 - 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от

6 до 10 баллов

- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7. Паспорт оценочных материалов

	7.2.7. Hachopi odeno india marephanob				
$N_{\underline{0}}$	Контролируемые	Код контролируемой	Наименование		
Π/Π	разделы (темы)	компетенции (или ее	оценочного		
	дисциплины	части)	средства		
1	Моделирование сложных объектов средствами Editable	ПК-1; ПК-2	Тест, защита лабораторных работ		
	Poly				
2	Использование модификаторов с геометрическими объектами	ПК-1; ПК-2	Тест, защита лабораторных работ		
3	Работа с Spline. Моделирование на основе сплайнов	ПК-1; ПК-2	Тест, защита лабораторных работ		
4	Создание простейшей анимации в 3d max	ПК-1; ПК-2	Тест, защита лабораторных работ		
5	Анимация объектов с помощью костей	ПК-1; ПК-2	Тест, защита лабораторных работ		
6	Использование трехмерной графики для создания полиграфической продукции	ПК-1; ПК-2	Тест, защита лабораторных работ		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Аббасов И.Б. Основы трехмерного моделирования в 3ds Max 2018 [Электронный ресурс]: учебное пособие/ Аббасов И.Б.— Электрон. текстовые данные.— Саратов: Профобразование, 2019.— 186 с.— Режим доступа: http://www.iprbookshop.ru/88001.html.— ЭБС «IPRbooks»
- 2. Соловьев М.М. 3DS Max 17 [Электронный ресурс]: самоучитель/ Соловьев М.М.— Электрон. текстовые данные.— Москва: СОЛОН-ПРЕСС, 2017.— 376 с.— Режим доступа: http://www.iprbookshop.ru/90350.html.— ЭБС «IPRbooks»
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Перечень ПО, включая перечень лицензионного программного обеспечения:

Microsoft Office 64-bit;

OC Windows 7 Pro;

Mozilla Firefox 81.0 (x64 ru);

Google Chrome;

PDFCreator;

Acrobat Pro 2017 Multiple Platforms Russian AOO License TLP (1-4,999);

3dsMax 2019, 2020;

Alias AutoStudio 2019, 2020;

AutoCAD 2019, 2020;

AutoCAD Mechanical 2019, 2020;

Autodesk® Fusion 360;

InventorCAM 2020;

Inventor Professional 2019, 2020, 2021;

A360

Ресурсы информационно-телекоммуникационной сети «Интернет»:

http://window.edu.ru

http://www.edu.ru/

Образовательный портал ВГТУ

Современные профессиональные базы данных и информационно-справочные системы:

http://citforum.ru/ www.render.ru

https://3ddd.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения обучения по дисциплине используется компьютерный класс. Компьютерный класс оснащен персональными компьютерами с установленным ПО, подключенными к сети Интернет. Помещение для самостоятельной работы. Читальный зал с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По дисциплине «Моделирование информационных систем в дизайне» читаются лекции, проводятся лабораторные работы.

На лекциях излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные занятия направлены на приобретение практических навыков проектирования, работы с графическими редакторами, ознакомления с правилами подготовки технической документации, подбора основного и вспомогательного инструментария для работы. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой отчетов по лабораторным работам, защитой выполненных работ. Освоение дисциплины оценивается на зачете с оценкой.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на лабораторном занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие задания.
Подготовка к зачету	При подготовке к зачету необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и решение задач в ходе выполнения лабораторных работ.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2020	Se
2	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2021	Su