МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный технический университет» в городе Борисоглебске

УТВЕРЖДАЮ
Директор В.В.Григораш

«31» 08 2021 г

РАБОЧАЯ ПРОГРАММА

дисциплины

«Технология конструкционных материалов»

Направление подготовки <u>15.03.01</u> <u>МАШИНОСТРОЕНИЕ</u>

Профиль Технологии, оборудование и автоматизация машиностроительных производств

Квалификация выпускника бакалавр

Нормативный период обучения <u>-/4 года и 11 м.</u>

Форма обучения -/ Заочная

Год начала подготовки 2019

Автор программы

/Попова О.И./

Заведующий кафедрой

Конструкторско-технологического

обеспечения нефтегазохимического

машиностроения

/Попова О.И./

Руководитель ОПОП

/Попова О.И./

Борисоглебск 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель изучения дисциплины - приобретение знаний и умений, позволяющих обоснованно выбирать материалы и форму изделия, учитывая при этом требования технологичности и влияние технологических методов получения и обработки заготовок на качество деталей; знаний свойств и характеристик конструкционных материалов, процессов получения и обработки деталей из них.

1.2. Задачи освоения дисциплины

- изучение физико-химических основ и технологических особенностей процессов получения и обработки материалов;
- ознакомление с принципами устройства типового оборудования, инструментов и приспособлений;
- изучение технико-экономических и экологических характеристик технологических процессов и оборудования, а также областей их применения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Технология конструкционных материалов» относится к дисциплинам базовой части блока Б1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Технология конструкционных материалов» направлен на формирование следующих компетенций:

ОПК-4 - умением применять современные методы для разработки малоотходных, энергосберегающих и экологически чистых машиностроительных технологий, обеспечивающих безопасность жизнедеятельности людей и их защиту от возможных последствий аварий, катастроф и стихийных бедствий; умением применять способы рационального использования сырьевых, энергетических и других видов ресурсов в машиностроении

Компетен	Результаты обучения, характеризующие						
ция	сформированность компетенции						
ОПК-4	Знать свойства и характеристики конструкционных и инструмен-						
	тальных материалов, технологические методы их обработки, тех-						
	нологические особенности методов формообразования и обра-						

ботки заготовок для изготовления деталей заданной формы и качества, сущность методов получения основных металлических и неметаллических материалов.

Уметь собирать и анализировать исходные информационные данные для проектирования изделий машиностроения и технологий их изготовления, выбирать рациональный материал и способ получения и обработки заготовок; исходя из заданных эксплуатационных требований к детали, разрабатывать с учетом заданной ее формы, материала и выбранного технологического процесса оптимальную технологическую форму заготовок.

Владеть методами обработки, измерений параметров, испытаний материалов и изделий, методами оценки уровня брака и анализа причин его возникновения, разработки технико-технологических и организационно-экономических мероприятий по его предупреждению и устранению

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Технология конструкционных материалов» составляет 7 з.е.

Распределение трудоемкости дисциплины по видам занятий

Заочная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной работы	часов	4
Аудиторные занятия (всего)	24	24
В том числе:		
Лекции	8	8
Практические занятия (ПЗ)	10	10
Лабораторные работы (ЛР)	6	6
Самостоятельная работа	219	219
Курсовая работа	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	Экзамен
Общая трудоемкость: академические часы	252	252
Зачетные единицы.	7	7

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Заочная форма обучения

№	Наименование	Содержание раздела	Лекц	Практ	Лаб.	CPC	Всего,
Π/Π	темы		ИИ	зан.	зан.		час

1	C	TC					
1		Кристаллическое строение метал-					
		лов. Кристаллизация сплавов. По-					
		лиморфное превращение. Анизо-					
	териалов	тропия. Диаграмма состояния же-					
		лезо-углерод. Основные виды					
		термической обработки. Влияние					
		примесей на свойства железо-					
		углеродистых сплавов. Физиче-					
		ские, химические, механические,					
		технологические (литейные свой-					
		ства, свариваемость, деформируе-					
		мость, обрабатываемость), экс-					
		плуатационные свойства. Методы					
		анализа металлов (физический,					
		химический, физико-химический,	1	1	2	20	24
		дилатометрический). Структур-					
		ные и механические методы ис-					
		следований конструкционных ма-					
		териалов. Статические, динами-					
		ческие, испытания при перемен-					
		ных нагрузках. Испытания на рас-					
		тяжение-сжатие, изгиб, кручение.					
		Определение твердости и удар-					
		ной вязкости материалов. Макро-					
		, микроанализ, фрактографиче-					
		ские исследования. Методы					
		оценки коррозионной стойкости.					
		Методы оценки внутренних де-					
		фектов металлов (радиационный,					
		магнитный, ультразвуковой).					
2	Основы металлур-	Структура производства черной					
		металлургии. Металлургия чу-					
	_	гуна. Исходные материалы для					
	-	доменного производства и их					
	-	подготовка к плавке (обогащение					
	цвенных металлов	руды, агломерация). Устройство					
		1 / 1					
		и принцип работы доменной					
		печи. Доменный процесс. Фи-					
		зико-химические процессы, про-					
		текающие в доменном производ-	1	1	_	39	41
		стве. Продукция доменного про-	1	1	_	3)	71
		изводства. Классификация и мар-					
		кировка чугунов. Металлургия					
		стали. Этапы выплавки стали и					
1		протекающие процессы. Исход-					
		ные материалы для плавки стали.					
		Мартеновский и кислородно-кон-					
		вертерный способ выплавки					
		стали. Выплавка стали в элек-					
1							
		тродуговых и индукционных пе-					
		чах. Производство стали из ме-					

_	1						1
		таллизированных окатышей. Раз-					
		ливка стали, кристаллизация и					
		строение стальных слитков. Про-					
		цесс раскисления стали. Кипя-					
		щие, спокойные и полуспокойные					
		стали. Примеси в стали. Понятие					
		углеродистых и легированных					
		сталей. Классификация по спо-					
		собу поставки. Маркировка ста-					
		лей. Способы повышения каче-					
		ства металла (электрошлаковый					
		переплав, вакуумно-дуговой пе-					
		реплав, электронно-лучевой пере-					
		плав, плавка сталей в плазменно-					
		дуговых печах, обработка ме-					
		талла синтетическим шлаком, ва-					
		1					
		куумная дегазация стали). Произ-					
		водство цветных металлов. Полу-					
		чение алюминия, меди, титана,					
		магния и их сплавов.					
3	Литейное	Характеристика литейного произ-					
	производство	водства. Общая схема получения					
		отливок. Классификация спосо-					
		бов изготовления отливок. Литей-					
		ные сплавы и их применение. Ли-					
		тейные свойства сплавов: жидко-					
		текучесть, ликвация, газопогло-					
		щение, линейная и объемная					
		усадка, склонность к образова-					
		нию трещин. Приготовление ли-					
		тейных сплавов. Процессы взаи-					
		модействия формы и отливки					
		Особенности изготовления отли-					
		вок из различных сплавов. Изго-					
		товление отливок в формах из не-					
		металлических материалов. Тех-	1	2	1	32	36
		нология изготовления отливок в		_	-	0.2	
		песчаных формах, назначение и					
		состав литейной формы и модель-					
		ного комплекта. Характеристики					
		материалов для изготовления мо-					
		дельного комплекта, формовоч-					
		ных, стержневых смесей. Виды					
		формовочных смесей. Способы					
		формовки. Литье по выплавляе-					
		мым моделям. Литье в оболочко-					
		вые формы. Изготовление отли-					
		вок в металлических формах. Ли-					
		тье в кокиль. Литье под давле-					
		нием. Центробежное литье. Не-					
		прерывное и полунепрерывное					
		литье. Электрошлаковое литье.					

		0.5			l		
		Общие принципы конструирова-					
		ния литых деталей. Дефекты					
		отливок, способы их контроля и					
		устранения.					
4	Обработка	Физико-механические основы,					
	металлов	виды обработки металлов давле-					
	давлением	нием и применяемое оборудова-					
		ние. Влияние обработки давле-					
		нием на структуру и свойства ме-					
		талла. Процесс пластического де-					
		формирования металла при раз-					
		личных температурах и схемах					
		напряженного состояния. Воз-					
		врат, рекристаллизация, ковкость					
		и штампуемость. Наклеп. Поня-					
		тие холодной и горячей обра-					
		ботки давлением. Температурные					
		интервалы. Основные типы					
		нагревательных устройств. Про-					
		катка. Сущность процесса. Про-					
		= =					
		дукция прокатного производства.					
		Устройство прокатного оборудо-					
		вания для сортового проката. Тех-					
		нологический процесс изготовле-					
		ния профильного и листового					
		проката. Дефекты прокатного ме-					
		талла. Прессование и волочение.	1	2	1	32	36
		Сущность процессов. Получение					
		сплошных и полых деталей. Со-					
		став и характеристика оборудова-					
		ния для прессования и волочения.					
		Свободная ковка. Сущность					
		ковки и область применения. Ос-					
		новные операции. Инструмент и					
		оборудование для ковки. Де-					
		фекты деталей, изготовленных					
		методом свободной ковки. Хо-					
		лодная объемная штамповка (вы-					
		садка, выдавливание, объемная					
		формовка). Холодная листовая					
		штамповка. Разделительные и					
		формообразующие операции. Ро-					
		тационная обработка. Горячая					
		объемная штамповка. Сущность					
		процесса. Исходные заготовки,					
		продукция. Применяемое обору-					
		дование, основные этапы техно-					
		логического процесса. Жидкая					
		штамповка. Дефекты деталей, из-					
		готовленных штамповкой.					
		готовленных штамповкой.					

5	Механическая об-	Физико-механические основы об-					
		работки металлов резанием. Ки-					
	деталей машин	нетика процесса резания. Физиче-					
	детален машин	ские явления, сопровождающие					
		, .					
		процесс резания. Точность, каче-					
		ство и производительность обра-					
		ботки. Классификация движений.					
		Элементы режима и их влияние					
		на процесс резания. Виды, схемы					
		обработки резанием и методы					
		формообразования поверхно-					
		сти. Инструментальные матери-					
		алы, характеристика свойств ин-					
		струментальных материалов. Гео-					
		метрия режущего инструмента.					
		Классификация и кинематика ме-					
		таллорежущих станков. Инстру-					
		ментальная оснастка и схемы об-					
		работки заготовок на многоцеле-					
		вых станках. Обработка заготовок					
		на станках токарной группы.					
		Типы токарных станков. Область					
		применения обработки точением.					
		Виды токарных резцов. Обра-					
		ботка заготовок на сверлильных и	2	2	1	32	37
		расточных станках. Характери-	2	2	1	32	37
		стика метода сверления. Эле-					
		менты и геометрия спирального					
		сверла. Сверление глубоких от-					
		верстий и отверстий большого					
		диаметра. Схемы обработки заго-					
		товок на расточных станках. Ре-					
		жущий инструмент и технологи-					
		ческая оснастка. Режимы резания.					
		Технологические требования к					
		конструкции деталей. Характери-					
		стика метода обработки строга-					
		нием. Типы строгальных станков.					
		Виды строгальных резцов. Об-					
		ласть применения обработки					
		строганием. Обработка заготовок					
		на протяжных станках. Типы и					
		назначение станков. Режущий ин-					
		струмент и схемы обработки заго-					
		товок. Режимы резания. Техноло-					
		гические требования к конструк-					
		ции деталей. Обработка заготовок					
		на фрезерных станках, характери-					
		стика метода фрезерования. Типы					
		фрезерных станков. Виды фрез.					
		Элементы и геометрия фрезы.					
Щ_	1	теомогрии фрезы.					

		,			1		
		Схемы обработки. Обработка за-					
		готовок на зубообрабатывающих					
		станках. Профилирование зубьев					
		зубчатых колес. Зуборезные ин-					
		струменты. Нарезание зубчатых					
		колес методом копирования и об-					
		катки. Режимы резания. Техноло-					
		гические требования к конструк-					
		ции деталей.					
		Обработка заготовок на шлифо-					
		вальных станках. Характеристика					
		метода шлифования. Режим реза-					
		ния. Силы резания. Основные					
		-					
		схемы шлифования. Абразивный					
		инструмент. Отделочная обра-					
		ботка. Отделка поверхностей чи-					
		стовыми резцами и шлифоваль-					
		ными кругами. Полирование. Аб-					
		разивно-жидкостная отделка.					
		Притирка. Хонингование. Супер-					
		финиширование. Отделочно-за-					
		чистная обработка деталей. Отде-					
		лочная обработка зубьев зубча-					
		тых колес. Обработка заготовок					
		без снятия стружки. Сущность					
		пластического деформирования.					
		Чистовая и упрочняющая обра-					
		ботка. Формообразование дета-					
		лей пластическим деформирова-					
		нием. Обкатывание и раскатыва-					
		ние поверхностей. Алмазное вы-					
		глаживание. Калибровка					
		отверстий Вибронакатывание.					
6	Электрофизиче-	Электроэрозионные методы обра-					
	ские и электрохи-	ботки. Электрохимические ме-					
	мические методы	тоды обработки. Анодно-механи-					
	обработки	ческая обработка. Химические					
	оораоотки	методы обработки. Электромеха-	1	1	-	32	34
		ническая обработка. Ультразву-					
		ковая обработка. Лучевые методы					
		обработки. Плазменная					
	T	обработка.					
7		Изготовление деталей из компо-					
	ния деталей из	зиционных материалов. Класси-					
	композиционных	фикация и структура композици-					
	материалов	онных материалов. Виды армиру-	1	1	1	32	35
		ющих волокон и матриц, требова-		1	1	ے د	33
		ния к ним. Способы производства					
		полуфабрикатов и готовых изде-					
		лий. Порошковая металлургия.					
		Способы получения и технологи-					
		•					

ческие свойства порошков. Приготовление смеси и формообразование заготовок. Холодное и горячие прессование. Спекание и окончательная обработка заготовок. Состав, структура и свойства полимерных материалов. Технология изготовления изделий из пластмасс. Методы формообразования. Особенности сварки и резки пластмасс. Способы изготовления резиновых технических деталей.					
Итого, 4 семестр	8	10	6	219	243
Экзамен	-	-	-	-	9
	8	10	6	219	252

5.2 Перечень лабораторных работ

- 1. Определение прочности и пластичности при растяжении.
- 2. Определение твердости материалов. Испытания на усталость.
- 3. Определение основных технологических параметров заготовительных операций листовой штамповки.
- 4. Обработка заготовок на фрезерных станках, характеристика метода фрезерования.
- 5. Изготовление деталей из композиционных порошковых материалов.

5.2 Перечень практических работ

1. Определение ударной вязкости конструкционных материалов. Вычислить ударную вязкость материала при испытаниях на копре маятниковом КМ – 30 и следующих геометрических размерах образца.

Размеры образцов для испытаний на ударную вязкость (ГОСТ 9454-78)

Вид	Радиус	Тип	Длина	Ширина	Высота	Глубина	Глубина	Высота
концентра	концентра	образц	L (предель-	B, mm	H (предель-	надреза	Концен-	рабочего
тора	тора, мм	a	ное		ное	h1	тратора	сечения
			отклонение		отклонение	(пре-	h	<i>H1</i> , мм
			\pm 0,6), mm		$\pm 0,1)$, мм	дельное	(предель-	
						отклоне-	ное	
						ние	отклоне-	
						\pm 0,1), мм	ние	
							\pm 0,6), MM	
U	1± 0,07*	1	55	10±0,10	8	-	-	8±0,1

- 2. Выплавка стали в электродуговых и индукционных печах.
- 2. Исследование технологических свойств конструкционных материалов.
- 3. Технология изготовления отливок в песчаных формах. Литье в металлические формы.

- 4. Технологический процесс изготовления профильного и листового проката. Определить усилие вырубки отверстия диаметром 30 мм в листовой стали марки 08кп толщиной 0,6 мм. Определить относительное удлинение материала, если известно, что первоначальная длина образца 120 мм, и он удлинился на 11 мм в процессе испытания.
- 5. Выбор параметров процесса резания и оценка их влияния на эффективность процесса. Нарисовать схему обработки фрезерованием, и обозначить движения резания. Вычислить скорость главного движения резания при токарной обработке заготовки диметром 45 мм и частоте вращения 3200 об/мин.
 - 6. Электроэрозионные методы обработки.
- 7. Спекание и окончательная обработка заготовок. Определить температуру спекания для порошка из стали марки Ст20.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

6.1. Курсовые проекты (работы)

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 4 семестре для заочной формы обучения.

Примерная тематика курсовой работы:

- 1. Производство чугуна.
- 2. Производство стали.
- 3. Производство цветных металлов*.
- 4. Изготовление машиностроительных профилей.
- 5. Изготовление поковок.
- 6. Изготовление деталей штамповкой.
- 7. Способы резки листового и сортового проката.
- 8. Современные способы литья.
- 9. Классификация и устройство металлорежущих станков.
- 10. Инструментальные материалы.
- 11. Обработка заготовок на токарных станках.
- 12. Обработка заготовок на станках сверлильно-расточной группы.
- 13. Обработка заготовок на станках строгально-протяжной группы.
- 14. Обработка заготовок фрезерованием.
- 15. Сущность и способы нарезания зубчатых колес.
- 16. Обработка заготовок шлифованием.
- 17. Методы отделочной обработки поверхности.
- 18. Обработка заготовок без снятия стружки.
- 19. Электрофизические и электрохимические методы обработки.
- 20. Применение различных способов сварки в заготовительном производстве.
- 21. Способы нанесения покрытий.
- 22. Пайка металлов и сплавов.
- 23. Порошковая металлургия.

- 24. Изготовление изделий из композиционных материалов.
- 25. Изготовление деталей из полимеров.
- * Тема может быть разделена на несколько тем, посвященных производству одного цветного металла.

Задачи, решаемые при выполнении курсовой работы:

- более глубокое изучение темы раздела дисциплины;
- формирование навыков самостоятельной работы с литературой;
- формирование навыков составления доклада (презентации).

Курсовая работа включат в себя расчетно-пояснительную записку.

6.2 Контрольные работы для обучающихся заочной формы обучения.

Выполнение контрольной работы не предусмотрено учебным планом.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, характеризую-	Критерии	Аттестован	He
тенция	щие сформированность компетенции	оценивания	АПССТОВАН	аттестован
ОПК-4	Знать свойства и характеристики кон-	Лаборатор-	Выполнение	Невыполнение
	струкционных и инструментальных мате-	ная работа,	работ в срок,	работ в срок,
	риалов, технологические методы их обра-	решение за-	предусмот-	предусмотрен-
	ботки, технологические особенности ме-	дач на прак-	ренный в ра-	ный в рабочих
	тодов формообразования и обработки за-	тическом за-	бочих про-	программах
	готовок для изготовления деталей задан-	нятии	граммах	
	ной формы и качества, сущность методов			
	получения основных металлических и не-			
	металлических материалов			
	Уметь собирать и анализировать исход-	Лаборатор-	Выполнение	Невыполнение
	ные информационные данные для проек-	ная работа,	работ в срок,	работ в срок,
	тирования изделий машиностроения и	решение за-	предусмот-	предусмотрен-
	технологий их изготовления, выбирать ра-	дач на прак-	ренный в ра-	ный в рабочих
	циональный материал и способ получе-	тическом за-	бочих про-	программах
	ния и обработки заготовок; исходя из за-	нятии	граммах	
	данных эксплуатационных требований к			

детали, разрабатывать с учетом заданной ее формы, материала и выбранного технологического процесса оптимальную технологическую форму заготовок.			
Владеть методами обработки, измерений параметров, испытаний материалов и изделий, методами оценки уровня брака и анализа причин его возникновения, разработки технико-технологических и организационно-экономических мероприятий по его предупреждению и устранению	ная работа, решение за- дач на прак- тическом за-	работ в срок, предусмот-	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний для заочной формы обучения оцениваются в 4 семестре по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, ха-	Критерии	0	*7	X 7		
тенция	рактеризующие сформированность компетенции	оценивания	Отлично	Хорошо	Удовл.	Неудовл.	
ОПК-4	Знать свойства и характери-	Тест	Выполнен	Выполнен	Выполн	В тесте	
	стики конструкционных и	1001	ие теста на			менее	
	инструментальных материа-					70% пра-	
	лов, технологические ме-		70 10070	90%	70- 80%	вильных	
	тоды их обработки, техноло-					ответов	
	гические особенности мето-						
	дов формообразования и об-						
	работки заготовок для изго-						
	товления деталей заданной						
	формы и качества, сущность						
	методов получения основ-						
	ных металлических и неме-						
	таллических материалов						
	Уметь собирать и анализи-	Решение	Задачи ре-	Проде-	Проде-	Задачи не	
	ровать исходные информа-	стандартных	шены в	монстри-	мон-	решены	
	ционные данные для проек-	практичес-	полном	рован	стриро-		
	тирования изделий машино-	ких задач	объеме и	-	ван вер-		
	строения и технологий их		получены	ход реше-			
	изготовления, выбирать ра-		верные	ния всех,	-		
	циональный материал и спо-		ответы	но не по-			
	соб получения и обра-			лучен	шинстве		
	ботки заготовок; исходя из			верный	задач		
	заданных эксплуатацион-			ответ во			
	ных требований к детали,			всех зада-			
	разрабатывать с учетом за-			чах			
	данной ее формы, материала						
	и выбранного технологиче-						

ского процесса оптимальную технологическую форму заготовок.					
Владеть методами обра-	Решение	Задачи ре-	Проле-	Проде-	Задачи не
ботки, измерений парамет-		-	-	-	решены
ров, испытаний материалов	•		рован вер-		решены
и изделий, методами оценки		объеме и			
уровня брака и анализа при-	1	получены		-	
чин его возникновения, раз-	_	_	всех, но		
работки технико-технологи-		ответы	не полу-	в боль-	
ческих и организационно-			чен вер-	шинстве	
экономических мероприя-			ный ответ	задач	
тий по его предупреждению			во всех за-		
и устранению			дачах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Полиморфизм или аллотропия это:

- А) существование одного и того же металла в нескольких кристаллических формах;
- Б) существование металла только в одной кристаллической форме;
- В) существование одного и того же металла в двух кристаллических формах.

2. Анизотропия это:

- А) неравномерность свойств по направлениям, определяемая различными расстояниями между атомами в кристаллической решетке;
- Б) равномерность свойств по направлениям, определяемая одинаковыми расстояниями между атомами в кристаллической решетке;
- В) неравномерность свойств по направлениям, независящая от расстояний между атомами в кристаллической решетке.

3. Эвтектика это:

- А) механическая смесь, образовавшаяся при одновременной кристаллизации из расплава;
- Б) механическая смесь, образовавшаяся в процессе превращения в твердом состоянии;
- В) химическое соединение.

4. Эвтектоид это:

- А) механическая смесь, образовавшаяся при одновременной кристаллизации из расплава;
- Б) механическая смесь, образовавшаяся в процессе превращения в твердом состоянии;
- В) твердый раствор.

5. В случае, если компоненты сплава обладают полной взаимной нерастворимостью образуется:

- А) твердый раствор;
- Б) химическое соединение;
- В) механическая смесь.

6. Дефекты кристаллического строения разделяют на:

- А) точечные, линейные и плоскостные;
- Б) нульмерные, одномерные и двумерные;
- В) верны оба ответа.

7. Аустенит это:

- А) твердый раствор углерода в α-железе;
- Б) твердый раствор углерода в β-железе;
- В) твердый раствор углерода в ү-железе.

8. Феррит это:

- А) твердый раствор углерода в α-железе;
- Б) твердый раствор углерода в β-железе;
- В) твердый раствор углерода в у-железе.

9. Сталь-железо-углеродистый сплав с содержанием углерода:

- A) < 2.14 %;
- Б) 2,14 %;
- B) > 2.14 %.

10. Цементит это:

- А) химическое соединение железа с углеродом;
- Б) твердый раствор углерода в β-железе;
- В) механическая смесь феррита и аустенита.

11. Перлит это:

- А) механическая смесь феррита и цементита, образующаяся при эвтектоидном распаде аустенита (0.8 %);
- Б) механическая смесь аустенита и цементита (4,3 %);
- В) механическая смесь феррита, аустенита и цементита (6,67 %).

12. Ледебурит это:

- А) механическая смесь феррита и цементита, образующаяся при эвтектоидном распаде аустенита (0,8 %):
- Б) механическая смесь аустенита и цементита (4,3 %);
- В) механическая смесь феррита, аустенита и цементита (6,67 %).

13. Нормализация это:

- А) нагрев выше точки А₃ и охлаждение на воздухе;
- Б) нагрев выше точки А₃ и быстрое охлаждение в воде или масле;
- В) нагрев выше точки A_1 и быстрое охлаждение в воде.

14. Закалка это:

- A) нагрев выше точки A_3 и охлаждение на воздухе;
- Б) нагрев выше точки А₃ и охлаждение в масле;
- В) нагрев выше точки A_1 и быстрое охлаждение в воде.

15. Отжиг это:

- А) нагрев выше точки А₃ и охлаждение на воздухе;
- Б) нагрев выше точки A_m и охлаждение в масле;
- В) нагрев выше точки A_3 или A_m с последующим охлаждением вместе с печью.

16. Отпуск это:

- A) нагрев ниже точки A_1 и медленное охлаждение;
- Б) нагрев выше точки A_m и охлаждение в масле;
- В) нагрев выше точки A_3 или A_m с последующим охлаждением вместе с печью.

17. Чугун получают в:

- А) мартеновских печах;
- Б) доменных печах:
- В) кислородных конверторах.

18. Топливо для выплавки чугуна:

- А) добавляют в состав шихты;
- Б) размещают в нижней части доменной печи под колошником;
- В) непосредственно в доменной печи не используется, руда плавится под действием тепла подаваемого дутьем воздуха.

19. Раскисление стали это:

- А) удаление растворенного кислорода;
- Б) снижение содержания вредных примесей;
- В) получение рН-нейтральной среды.

20. Какая сталь является более качественной и содержит меньшее количество растворенного кислорода:

- А) кипящая;
- Б) спокойная;
- В) полуспокойная.

21. Для производства сварных конструкций используют стальные сплавы поставляемые:

- А) по механическим свойствам;
- Б) по химическому составу;
- В) по механическим свойствам и химическому составу.

7.2.2 Примерный перечень заданий для решения стандартных задач

І. СТРОЕНИЕ И СВОЙСТВА МЕТАЛЛОВ

1. Олово – это металл ...

- 1. лёгкий
- 2. легкоплавкий
- 3. щелочной
- 4. благородный

2. а-железо существует в интервале температур ...

- 1. до 911 °C;
- 2. от 911 до1392 °С;
- 3. от 1392 до 1539 °C;
- 4. выше 1539 °С.

3. Прочность – это свойство ...

- 1. химическое
- 2. физическое
- 3. механическое
- 4. технологическое

4. Вакансии относятся к дефектам ...

- 1. точечным
- 2. линейным
- 3. поверхностным
- 4. объёмным

5. Точка кюри – это температура ...

- 1. плавления
- 2. полиморфного превращения
- 3. магнитного превращения
- 4. кипения

6. Плотность – это свойство ...

- 1. химическое
- 2. физическое
- 3. механическое
- 4 технологическое

7. Различие свойств в кристаллах в зависимости от направления испытания называется ...

- 1. изотропией
- 2. анизотропией

- 3. квазиизотропией
- 4. модифицированием

8. Наименьшая геометрически правильная часть объёма кристаллической решётки называется ...

- 1. базисом
- 2. периодом
- 3. элементарной ячейкой
- 4. координационным числом

9. Свариваемость – это свойство ...

- 1. химическое
- 2. физическое
- 3. механическое
- 4. технологическое

10. у-железо существует в интервале температур ...

- 1. до 911 °C
- 2. 911-1392 °C
- 3. 1392-1539 °C
- 4. выше 1539 °C

11. Уменьшение размеров зёрен путём введения специальных веществ называется ...

- 1. изотропией
- 2. анизотропией
- 3. квазиизотропией
- 4. модифицированием

12. Число атомов, приходящихся на одну элементарную ячейку, называется ...

- 1. базисом
- 2. периодом
- 3. координационным числом
- 4. коэффициентом компактности

13. Свинен – это металл ...

- 1. шелочной
- 2. лёгкий
- 3. легкоплавкий
- 4. чёрный

14. Одинаковость свойств по всем направлениям у аморфных тел называется ...

- 1. полиморфизмом
- 2. анизотропией
- 3. изотропией
- 4. квазиизотропией

15. Краевая дислокация относится к дефектам ...

- 1. точечным
- 2. линейным
- 3. поверхностным
- 4. объёмным

ІІ. ДИАГРАММЫ СОСТОЯНИЯ ДВОЙНЫХ СИСТЕМ

16. Однородная часть системы, отделённая от других частей поверхностью раздела, называется ...

- 1. компонентом
- 2. элементом
- 3. фазой
- 4. сплавом

17. Диаграмма состояния системы с образованием механической смеси компонентов относится к ...

- 1. первому типу
- 2. второму типу
- 3. третьему типу
- 4. четвёртому типу

18. Сплав, образующийся при распаде твёрдой фазы на две новые твёрдые фазы, называется ...

- 1. эвтектикой
- 2. эвтектоидом
- 3. соединением
- 4. твёрдым раствором

19. Максимальное число фаз, находящихся в равновесии в двухкомпонентной системе, равно ...

- 1. одному
- 2. двум
- 3. трём
- 4. четырём

20. Двухфазной является система ...

- 1. вода со льдом
- 2. твёрдый раствор золота и серебра
- 3. раствор сахара в воде
- 4. кристалл поваренной соли

21. Вещества, образующие систему, называются ...

- 1. элементами
- 2. сплавами
- 3. фазами
- 4. компонентами

22. Диаграмма состояния системы с образованием неограниченных твёрдых растворов относится к ...

- 1. первому типу
- 2. второму типу
- 3. третьему типу
- 4. четвёртому типу

23. Однофазной является система ...

- 1. вода со льдом
- 2. раствор соли в воде
- 3. эвтектический сплав
- 4. эвтектоидный сплав

24. Сплав, образующийся при одновременной кристаллизации двух твёрдых фаз, называется ...

- 1. эвтектикой
- 2. эвтектоидом
- 3. твёрдым раствором
- 4. соединением

25. Эвтектика – это ...

- 1. твёрдый раствор
- 2. механическая смесь двух твёрдых фаз, одновременно кристаллизующихся из жидкости
- 3. соединение
- 4. механическая смесь двух твёрдых фаз, образующихся при распаде твёрдой фазы

III. ДИАГРАММА СОСТОЯНИЯ СИСТЕМЫ ЖЕЛЕЗО-ЦЕМЕНТИТ

- 26. Температура плавления железа ...
 - 1.911 °C
 - 2. 1392 °C
 - 3. 1539 °C
 - 4. 1600 °C

27. Твёрдый раствор углерода в α-железе – это ...

- 1. аустенит
- 2. Перлит
- 3. феррит
- 4. ледебурит

28. Цементит – это ...

- 1. твёрдый раствор
- 2. эвтектическая смесь
- 3. эвтектоидная смесь
- 4. химическое соединение

29. Эвтектоидная смесь феррита и цементита называется ...

- 1. ледебуритом
- 2. цементитом
- 3. перлитом
- 4. аустенитом

30. Эвтектическая смесь аустенита и цементита называется ...

- 1. цементитом
- 2. перлитом
- 3. ферритом
- 4. ледебуритом

7.2.3 Примерный перечень заданий для решения прикладных задач

IV. ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ

31. Режим термической обработки можно представить графически в координатах:

- 1. температура скорость охлаждения
- 2. температура концентрация углерода
- 3. время скорость нагрева
- 4. температура время

32. Пересыщенный твёрдый раствор углерода в α-железе – это ...

- 1. феррит
- 2. сорбит
- 3. мартенсит
- 4. аустенит

33. Нагрев стали сочетается с пластической деформацией при ...

- 1. закалке
- 2. индукционной обработке
- 3. химико-термической обработке
- 4. термомеханической обработке

34. Глубина проникновения закалённой зоны называется ...

- 1. наклёпом
- 2. закаливаемостью
- 3. прокаливаемостью
- 4. критическим диаметром

35. Для доэвтектоидной стали оптимальной является закалка от температуры ...

- 1. на 30-50°С выше А_{С1}
- 2. на 30-50°C ниже A_{C1}
- 3. на 30-50°С выше А_{С3}
- 4. на 30-50°С ниже А_{С3}

36. К отжигу второго рода относится ...

- 1. фазовая перекристаллизация
- 2. для снятия внутренних напряжений
- 3. гомогенизирующий
- 4. рекристаллизационный

37. Твёрдый раствор углерода в у-железе – это ...

- 1. феррит
- 2. сорбит
- 3. перлит
- 4. аустенит

38. Процесс диффузионного насыщения поверхности стали углеродом называется ...

- 1. азотированием
- 2. цианированием
- 3. нитроцементацией
- 4. цементацие

39. Упрочнение металла под действием пластической деформации называется ...

- 1. закаливаемостью
- 2. прокаливаемостью
- 3. возвратом
- 4. наклёпом

40. Высокому отпуску стали соответствует температурный интервал ...

- 1. от 150 до 250 °C
- 2. от 350 до 450 °C
- 3. от 500 до 680 °C
- 4. от 700 ло 800 °С

V. СТАЛИ И ЧУГУНЫ

41. Марка стали 40. это сталь ...

- 1. углеродистая конструкционная качественная, условный номер 40, спокойная
- 2. углеродистая конструкционная обыкновенного качества, содержащая 0,4 %С
- 3. углеродистая инструментальная качественная, содержащая 0,4 %С
- 4. углеродистая конструкционная качественная, содержащая 0,4 %С

42. В марке стали 15х число 15 означает ...

- 1. 0,15 % углерода
- 2. 1,5 % углерода
- 3. 15 % хрома
- 4. 1,5 % хрома

43. Графит в чугуне имеет хлопьевидную форму это -

- 1. белый чугун
- 2. серый чугун
- 3. ковкий чугун
- 4. высокопрочный чугун

44. Укажите марку стали углеродистой конструкционной качественной:

- 1. Ст3кп.
- 2. У10
- 3. 40.
- 4 50A

45. Сталь ШХ15ВД – это ...

- 1. шарикоподшипниковая, содержащая около 1 % углерода, около 1,5 % хрома, особовысококачественная
- 2. шарикоподшипниковая, содержащая около 1 % углерода, около 1,5 % хрома, менее 1,5 % вольфрама, менее 1,5 % меди, качественная
- 3. шарикоподшипниковая, содержащая около 1 % углерода, около 15 % хрома, особовысококачественная
- 4. нержавеющая сталь
- 46. Укажите марку стали углеродистой конструкционной обыкновенного качества, с гарантированным химическим составом, но не гарантированными механическими свойствами, содержащей углерода 0,38-0,49%, марганца 0,50-0,80%, кремния 0,15-0,35%, спокойной:
 - 1. Ст6сп.
 - 2. БСт6Гсп.
 - 3. БСт6сп.
 - 4. ВСт6Гсп.
- 47. Буквой М в марке стали обозначают ...
 - 1. медь
 - 2. молибден
 - 3. марганец
 - 4. магний
- 48. В марке чугуна ЧХ22 число 22 означает ...
 - 1. предел прочности при растяжении
 - 2. предел прочности при изгибе
 - 3. 22 % хрома
 - 4. 2,2 % хрома
- 49. Сталь, содержащая от 0,14 до 0,18 % углерода, от 1,3 до 1,7 % марганца, от 0,08 до 0,14 % ванадия, от 0,015 до 0,025 % азота, обозначается маркой ...
 - 1. 16Г2ФА.
 - 2. 16Г2АФ.
 - 3. 14Г2АФ.
 - 4. 16Γ2BA.
- 50. Сплав содержит около 0,85 % углерода, до 0,8 % марганца, до 0,4 % кремния, до 0,04 % серы, до 0,035 % фосфора, остальное железо, это:
 - 1. автоматная сталь
 - 2. углеродистая сталь
 - 3. легированная сталь
 - 4. чугун
- 51. В марке стали Р18 число 18 означает ...
 - 1. 18 % вольфрама
 - 2. 18 % карбида вольфрама
 - 3. 1,8 % углерода
 - 4. 18 % бора
- 52. Жаропрочность стали это способность сопротивляться ...
 - 1. химическому действию окружающей газовой среды при высоких температурах
 - 2. электрохимическому воздействию окружающей среды при высоких температурах
 - 3. пластической деформации и разрушению при высоких температурах
 - 4. пластической деформации при внедрении другого более твёрдого тела
- 53. Марка сплава У12А это сталь углеродистая ...
 - 1. инструментальная высококачественная, содержащая 0,12 % углерода
 - 2. инструментальная качественная, содержащая 1,2 % углерода
 - 3. конструкционная качественная, содержащая 0,12 % углерода
 - 4. инструментальная высококачественная, содержащая 1,2 % углерода

54. Коррозионностойкой стали соответствует марка ...

- 1.40XH
- 2. ШХ15СГ
- 3. 12X18H10
- 4. X20H80

55. В марке сплава СЧ35 число 35 означает ...

- 1. 3,5 % углерода
- 2. относительное удлинение в %
- 3. предел прочности при растяжении
- 4. предел прочности при изгибе

56. Ст3пс – это сталь углеродистая конструкционная ...

- 1. обыкновенного качества, с гарантированными механическими свойствами, с условным порядковым номером 3, полуспокойная
- 2. качественная, с гарантированным химическим составом, содержащая 0,3 %C, полуспокойная
- 3. обыкновенного качества, с гарантированным химическим составом, с условным порядковым номером 3, полуспокойная
- 4. обыкновенного качества, с гарантированными механическими свойствами, содержащая 0,3 % С, полуспокойная

57. Укажите марку магнитно-твёрдой стали:

- 1. T15K6
- 2. MH19
- 3. EX5K5
- 4. X12M

58. Марка чугуна КЧ60-3, число 3 означает ...

- 1. 3 % кобальта
- 2. предел прочности при растяжении
- 3. предел прочности при изгибе
- 4. относительное удлинение в %

59. Марка стали АС14. это - ...

- 1. сталь легированная качественная, группы А, содержащая 14 % кремния
- 2. сталь автоматная, содержащая 0,14 % углерода и менее 1,5 % кремния
- 3. сталь автоматная, содержащая 0,14 % углерода и от 0,15 до 0,3 5% свинца
- 4. сталь легированная автоматная, с порядковым номером 14

60. Высокой износостойкостью обладает сталь марки ...

- 1. 12X18H9
- 2. 110Г13Л
- 3. T15K6
- 4. 09Γ2C

VI. ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ

61. Алюминий содержит 0,05 % примесей, его марка ...

- 1 A995
- 2. A95
- 3. A5
- 4. A0

62. В марке сплава Л68 число 68 означает ...

- 1. 68 % цинка
- 2. 6,8 % цинка
- 3. 68 % меди
- 4. порядковый номер

63. Сплав АМг2 – это ...

- 1. антифрикционный сплав
- 2. жаропрочный сплав
- 3. деформируемый сплав, не упрочняемый термообработкой
- 4. деформируемый сплав, упрочняемый термообработкой

64. Сплав на основе меди, в котором основной легирующий элемент цинк, это:

- 1. бронза
- 2. латунь
- 3. мельхиор
- 4. нейзильбер

65. Сплав МА12 – это ...

- 1. деформируемый алюминиевый сплав с порядковым номером 12
- 2. деформируемый магниевый сплав с порядковым номером 12
- 3. деформируемый магниевый сплав, содержащий 12% алюминия
- 4. литейный магниевый сплав

66. Специальной деформируемой бронзе соответствует марка ...

- 1. БрБ2
- 2. БрОЦ4-3
- 3. БрО5С25
- 4. Д16

67. К силуминам относится сплав ...

- 1. AK6
- 2. AC14
- 3. АЛ2
- 4. CAC

68. Сплав Х20Н80 обладает ...

- 1. высокой электропроводимостью
- 2. высокой эвукопроводимостью
- 3. высокой упругостью
- 4. высоким электросопротивлением

69. Буквой М в марках сплавов цветных металлов обозначают ...

- 1. магний
- 2. марганец
- 3. мель
- 4. молибден

70. В марке сплава В95 число 95 означает ...

- 1. 95 % алюминия
- 2. 95 % вольфрама
- 3. предел прочности при растяжении
- 4. порядковый номер

71. Алюминиевый сплав содержит от 6 до 9% оксида алюминия, это:

- 1. CAC-1
- 2. CAΠ-1
- 3 CAΠ-2
- 4. CAΠ-3

72. Полиморфных модификаций у титана ...

- 1. одна
- 2. две
- 3. три
- 4. четыре

73. Марка литейного титанового сплава ...

- 1. Л86
- 2. МЛ5

- 3. ВТ3-1Л
- 4. BT1-0

74. Гранецентрированную кубическую решётку имеет ...

- 1. хром
- 2. вольфрам
- 3. медь
- 4. магний

75. Первое место по электропроводимости среди металлов занимает ...

- 1. медь
- 2. серебро
- 3. золото
- 4. алюминий

76. В марке М4 меди содержится ...

- 1.4,0 %
- 2. 0,4 %
- 3.99,0%
- 4.99,4%

77. Марка специальной литейной латуни ...

- 1. Л90
- 2. ЛАН59-3-2
- 3. ЛШ16К4
- 4. АЛ9

78. Сплав марки МНА13-3 называется ...

- 1. мельхиор
- 2. куниаль
- 3. нейзильбер
- 4. манганин

79. Сплав, обладающий эффектом «памяти формы», называется ...

- 1. нихром
- 2. хромель
- 3. нитинол
- 4. алюмель

80. Марка ВТ1-0 означает ...

- 1. технический титан
- 2. деформируемый титановый сплав
- 3. литейный титановый сплав
- 4. высокопрочный титановый сплав

VII. МЕТАЛЛУРГИЯ

81. Способ получения металлов, основанный на том, что тепло, необходимое для процесса, обеспечивается сжиганием топлива, называется ...

- 1. пирометаллургическим
- 2. гидрометаллургическим
- 3. электрометаллургическим
- 4. химико-металлургическим

82. Кипящая сталь получается, если её ...

- 1. раскислять одним раскислителем
- 2. раскислять двумя раскислителями
- 3. раскислять тремя раскислителями
- 4. не раскислять

83. Материал, загружаемый в плавильную печь для связывания пустой породы, называется ...

- 1. рудой
- 2. топливом
- 3. флюсом
- 4. огнеупором

84. Один из недостатков разливки стали в изложницы снизу – это ...

- 1. малая производительность
- 2. разбрызгивание металла на стенки
- 3. потери металла
- 4. простота

85. Дно доменной печи называется ...

- 1. лещадью
- 2. лёткой
- 3. горном
- 4. распаром

86. Усадочную раковину имеет слиток ...

- 1. кипящей стали
- 2. полуспокойной стали
- 3. спокойной стали
- 4. полукипящей стали

87. Прямое восстановление железа из руды – это восстановление ...

- 1. водородом
- 2. азотом
- 3. углеродом
- 4. оксидом углерода

88. В доменной печи нельзя получить ...

- 1. чугун
- 2. шлак
- 3. ферросплавы
- 4. сталь

89. Уменьшить содержание серы в стали можно ...

- 1. вакуумной дегазацией
- 2. обработкой синтетическим шлаком
- 3. вакуумно-дуговым переплавом
- 4. плавкой в плазменно-дуговых печах

90. Неоднородность состава стали в различных частях слитка называется ...

- 1. внутрикристаллитной ликвацией
- 2. межкристаллитной ликвацией
- 3. зональной ликвацией
- 4. внутридендритной ликвацией

VIII. ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ

91. Вид прокатки, при котором валки вращаются в разные стороны, называется ...

- 1. продольной
- 2. поперечной
- 3. поперечно-винтовой
- 4. Косой

92. Наибольшая потеря металла происходит при ...

- 1. прокатке
- 2. прессовании
- 3. ковке

- 4. волочении
- 93. Операция ковки, при которой высота заготовки уменьшается, а площадь поперечного сечения увеличивается, называется ...
 - 1. протяжкой
 - 2. гибкой
 - 3. осадкой
 - 4. разгонкой
- 94. К видам обработки металлов давлением не относится ...
 - 1. штамповка
 - 2. резание
 - 3. волочение
 - 4. прессование
- 95. Прокатка, при которой валки вращаются в одну сторону, называется ...
 - 1. поперечной
 - 2. продольной
 - 3. поперечно-винтовой
 - 4. косой

ІХ. ЛИТЕЙНОЕ И СВАРОЧНОЕ ПРОИЗВОДСТВО

- 96. Способность формы или отливки сжиматься при усадке отливки называется ...
 - 1. пластичностью
 - 2. податливостью
 - 3. прочностью
 - 4. огнеупорностью
- 97. К литейным свойствам не относится ...
 - 1. усадка
 - 2. жидкотекучесть
 - 3. кристаллизация
 - 4. склонность к ликвации
- 98. Приспособление, при помощи которого в литейной форме получается полость близкая к конфигурации будущей отливки, называется ...
 - 1. модельной плитой
 - 2. опокой
 - 3. литейной моделью
 - 4. стержневым ящиком
- 99. К сварке плавлением относится ...
 - 1. диффузионная
 - 2. электрошлаковая
 - 3. ультразвуковая
 - 4. сварка взрывом
- 100. При сваривании элементов в виде букв «т» или «г» швы называют:
 - 1. стыковыми
 - 2. тавровыми
 - 3. угловыми
 - 4. точечными

Х. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

- 101. Полимеры, молекулы которых состоят из двух цепей, соединённых химическими связями, называются ...
 - 1. разветвлёнными
 - 2. линейными
 - 3. ленточными

4. пространственными

102. К глютиновым клеям относится ...

- 1. казеиновый
- 2. мездровый
- 3. резиновый
- 4. силикатный

103. Пластичный материал – продукт переработки старых резиновых изделий и отходов резинового производства называется ...

- 1. пластификатором
- 2. наполнителем
- 3. регенератом
- 4. противостарителем

104. Вспомогательные материалы, служащие для обесцвечивания стекла, называются ...

- 1. окислителями
- 2. глушителями
- 3. осветлителями
- 4.восстановителями

105. К синтетическим полимерам относится ...

- 1. целлюлоза
- 2. крахмал
- 3. фенолоформальдегидная смола
- белок

106. Добавки, вводимые в пластмассы для сокращения времени отвердевания, называются ...

- 1. наполнители
- 2. стабилизаторы
- 3. отвердители
- 4. катализаторы

107. Многослойные лакокрасочные покрытия наносятся в следующем порядке:

- 1. шпаклёвка, грунтовка, эмаль, лак
- 2. шпаклёвка, грунтовка, лак, эмаль
- 3. грунтовка, шпаклёвка, эмаль, лак
- 4. грунтовка, лак, шпаклёвка, эмаль

108. К композиционным материалам относится ...

- 1. полихлорвинил
- 2. оргстекло
- 3. стеклотекстолит
- 4. фторопласт

109. Полимеры, в составе основной цепи которых встречаются атомы неорганических элементов, называются ...

- 1. органическими
- 2. элементоорганическими
- 3. неорганическими
- 4. элементарными

110. Свойство, характерное для неорганического стекла, это:

- 1. пластичность
- 2. твердость
- 3. полиморфизм
- 4. упругость

111. Добавки, вводимые в пластмассы для улучшения их механических свойств, уменьшения усадки при отвердении, повышения стойкости к действию различных сред, снижения их стоимости, это ...

- 1. наполнители
- 2. стабилизаторы
- 3. катализаторы
- 4. отвердители

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Строение конструкционных материалов.
- 2. Механические свойства конструкционных материалов.
- 3. Технологические свойства конструкционных материалов.
- 4. Металлургия чугуна. Устройство и принцип работы доменной печи.
- 5. Физико-химические процессы в доменной печи.
- 6. Металлургия стали. Этапы выплавки стали.
- 7. Конвертерный и кислородно-конвертерный способы выплавки стали.
- 8. Мартеновский способ выплавки стали.
- 9. Выплавка стали в электродуговых и индукционных печах.
- 10. Внедоменное получение железа.
- 11. Повышение качества стали.
- 12. Литейные сплавы и их применение.
- 13. Свойства литейных сплавов.
- 14. Приготовление литейных сплавов.
- 15. Литье в песчаные формы. Литниковая система, модельный комплект.
- 16. Виды смесей, применяемых при литье в песчаные формы.
- 17. Способы формовки при литье в песчаные формы.
- 18. Особенности изготовления отливок из различных сплавов.
- 19. Литье по выплавляемым моделям.
- 20. Литье в оболочковые формы.
- 21. Литье в кокиль.
- 22. Литье под давлением.
- 23. Центробежное литье.
- 24. Общие принципы конструирования литых деталей.
- 25. Виды обработки давлением.
- 26. Типы оборудования, применяемого при обработке давлением.
- 27. Физико-механические основы обработки давлением.
- 28. Холодная объемная штамповка.
- 29. Разделительные операции холодной листовой штамповки.
- 30. Формообразующие операции холодной листовой штамповки.
- 31. Горячая объемная штамповка.
- 32. Виды обработки материалов резанием. Главное движение и движение подачи при различных видах обработки металлов резанием.
- 33. Методы формообразования поверхностей. Режимы резания.
- 34. Геометрические параметры режущего инструмента и их влияние на процесс резания.
- 35. Инструментальные материалы.
- 36. Режущий инструмент и обработка заготовок на токарных станках.
- 37. Режущий инструмент и обработка заготовок на сверлильных станках.
- 38. Обработка заготовок на расточных станках.

- 39. Фрезерование. Сущность и режущий инструмент.
- 40. Обработка заготовок строганием.
- 41. Обработка заготовок на протяжных станках.
- 42. Обработка заготовок на зубообрабатывающих станках.
- 43. Сущность и схемы шлифования.
- 44. Отделка поверхностей чистовыми резцами и шлифовальными кругами. Полирование.
- 45. Абразивно-жидкостная отделка. Притирка поверхностей.
- 46. Хонингование. Суперфиниширование.
- 47. Отделочно-зачистная обработка деталей. Отделочная обработка зубьев зубчатых колес.
- 48. Обкатывание и раскатывание поверхностей. Алмазное выглаживание.
- 49. Калибровка отверстий. Вибронакатывание.
- 50. Накатывание резьб, шлицевых валов, зубчатых колес.
- 51. Накатывание рифлений и клейм. Упрочняющая обработка поверхностных слоев деталей.
- 52. Электроэрозионная обработка.
- 53. Электрохимическая обработка.
- 54. Химическая обработка.
- 55. Электрохимическая обработка.
- 56. Анодно-механическая обработка.
- 57. Ультразвуковая обработка.
- 58. Лучевые методы обработки.
- 59. Понятие композиционного материала, преимущества, недостатки и область применения.
- 60. Классификация композиционных материалов.
- 61. Требования, предъявляемые к матричным и армирующим материалам.
- 62. Виды армирующих волокон и материалы матриц.
- 63. Вспомогательные операции получения КМ, изготовление полуфабрикатов (препрегов).
- 64. Парогазофазные способы получения полуфабрикатов и изделий из металлических композиционных материалов.
- 65. Жидкофазные способы получения полуфабрикатов и изделий из металлических композиционных материалов.
- 66. Твердожидкофазные способы получения полуфабрикатов и изделий из металлических композиционных материалов.
- 67. Твердофазные способы получения полуфабрикатов и изделий из металлических композиционных материалов.
- 68. Преимущества, недостатки и область применения порошковой металлургии.
- 69. Способы получения порошков.
- 70. Технологические свойства порошков.
- 71. Приготовление смеси порошковых материалов.
- 72. Формообразование ПМ холодным и горячим прессованием.
- 73. Формообразование ПМ изостатическим формованием.
- 74. Формообразование ПМ прокаткой.
- 75. Формообразование ПМ выдавливанием.
- 76. Спекание заготовок из порошковых материалов.
- 77. Окончательная обработка заготовок из порошковых материалов.
- 78. Понятие, состав, классификация пластмасс.
- 79. Технологические свойства пластмасс.
- 80. Прямое (компрессионное) прессование деталей из пластмасс.

- 81. Литьевое прессование деталей из пластмасс.
- 82. Литье под давлением пластмассовых деталей.
- 83. Центробежное литье пластмассовых деталей.
- 84. Выдавливание (экструзия) пластмассовых деталей.
- 85. Пневматическая и вакуумная формовка пластмассовых деталей.86. Штамповка пластмассовых деталей (жестким и эластичным пуансоном).
- 87. Краткая характеристика получения деталей из композиционных пластиков
- 88. Состав и свойства резин.
- 89. Способы изготовления резиновых технических деталей.
- 90 Вулканизация резиновых изделий.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит тестовые задания и 2 вопроса. Студент может получить положительную аттестацию по дисциплине только в случае выполнения лабораторных работ и практических заданий.

Базовый уровень освоения дисциплины (оценка «удовлетворительно»):

- знает основные связи между составом, строением и свойствами материалов и сплавов;
- знает основные группы конструкционных материалов, классифицирует их по основным признакам;
- знает основные способы получения и обработки конструкционных материалов;
- умеет с помощью справочной литературы выбрать материал с учетом условий работы;
- умеет с помощью справочной литературы выбрать способ получения или обработки заготовки с учетом ее материала;
- владеет специальной терминологией в предметной области и общими представлениями о перспективах развития современных конструкционных материалов.

Уровень освоения дисциплины на оценку «хорошо»:

- знает номенклатуру и марки основных конструкционных материалов и сплавов;
- знает закономерности изменения свойств материалов и сплавов в результате механического и термического воздействий;
- знает материалы с особыми свойствами, их классификацию и характеристики;
- знает теоретические основы методов переработки конструкционных материалов;
- знает применяемое при получении обработки конструкционных материалов технологическое оборудование, оснастку, инструмент;
- умеет выбирать основные и вспомогательные материалы и способы реализации основных технологических процессов;

- умеет применять прогрессивные методы эксплуатации технологического оборудования при изготовлении изделий машиностроения;
- владеет методами проектирования технологических процессов изготовления заготовок.

Высокий уровень освоения дисциплины (оценка «отлично»):

- знает перспективные металлические и неметаллические конструкционные материалы,
- знает области применения современных конструкционных материалов различных групп;
- знает закономерности изменения свойств материалов и сплавов в результате механического, термического и химико-термического воздействий;
- знает технологические возможности различных методов обработки материалов;
 - умеет экономически обосновать выбор метода обработки;
 - владеет навыками отработки конструкций на технологичность.

Оценка «неудовлетворительно» ставится в случае отсутствия твердых знаний, или несоответствия критериям оценки «удовлетворительно».

7.2.7 Паспорт оценочных материалов

	7,207 114161101	71 OUCHO IIIDIX MA	i e pii uu i o b
№	Контролируемые разделы	Код	Наименование оценочного
п/п	(темы) дисциплины	контролируемой	средства
		компетенции	
1	Строение и основные свойства	ОПК-4	Тест, защита лабораторных ра-
	конструкционных материалов		бот, требования к курсовой ра-
			боте, экзамен
2	Основы металлургического	ОПК-4	Тест, требования к курсовой ра-
	производства. Производство		боте, экзамен
	черных и цветных металлов		
3	Литейное производство	ОПК-4	Тест, защита лабораторных ра-
			бот, требования к курсовой ра-
			боте, экзамен
4	Обработка металлов давлением	ОПК-4	Тест, защита лабораторных ра-
			бот, требования к курсовой ра-
			боте, экзамен
5	Механическая обработка заго-	ОПК-4	Тест, защита лабораторных ра-
	товок деталей машин		бот, требования к курсовой ра-
			боте, экзамен
6	Электрофизические и электро-	ОПК-4	Тест, требования к курсовой ра-
	химические методы обработки		боте, экзамен
7	Технология создания деталей	ОПК-4	Тест, защита лабораторных ра-
	из композиционных материа-		бот, требования к курсовой ра-
	лов		боте, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тестовых заданий на бумажном носителе. Время тестирования 30 мин. Затем экзаменатором осуществляется

проверка теста, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем экзаменатором осуществляется проверка решения задач, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем экзаменатором осуществляется проверка решения задач, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

Оценочные средства устного опроса

Устный опрос по теме «Обработка металлов давлением»

Проверяемый результат: ОПК-4.Р3.

Вопросы:

- 1. Опишите сущность обработки металлов давлением и основные виды такой обработки.
- 2. Холодная и горячая деформации. Их влияние на структуру и свойства металла.
- 3. Сущность процесса прокатки. Продукция прокатного производства.
- 4. Инструмент и оборудование для прокатки.
- 5. Опишите сущность процесса ковки.
- 6. Оборудование, применяемое при ковке.
- 7. Горячая объемная штамповка. Сущность процесса, оборудование для горячей штамповки.
- 8. Холодная листовая штамповка. Холодное выдавливание, сущность процесса, оборудование листовой штамповки.
- 9. Опишите сущность процесса прессования и его технологию.
- 10. Опишите сущность процесса волочения и его технологию.

Критерии оценки ответов:

- 1 ответ верный, в полном объеме;
- 0,5 ответ верный, но не полный;
- 0 ответ неверный.

Шкала оценивания:

Итоговый балл	0÷0,5	1	1,5÷2	2,5÷3
Оценка	2	3	4	5

Методика проведения: проводится в аудитории для практических занятий в начале занятия, используется устный метод контроля, применяется инди-

видуальная форма, задается по три вопроса, время проведения опроса до 10 минут, ответы даются без использования справочной литературы (конспектов) и средств коммуникации, результат сообщается немедленно.

Оценочные средства по лабораторным работам

Лабораторная работа «Определение твердости и ударной вязкости материалов»

Проверяемый результат: ОПК-4.Р1

Критерии оценки

- 1 работа выполнена самостоятельно, в полном объеме, отчет соответствует требованиям методических указаний;
- 0,75 работа выполнена самостоятельно, в полном объеме, но отчет содержит незначительные логические погрешности, описки, отступления от структуры отчета.
- 0,5 работа выполнена самостоятельно, но не в полном объеме, отчет соответствует требованиям методических указаний;
- 0,5 работа выполнена при помощи преподавателя и хорошо подготовленных и уже выполнивших данную работу студентов, отчет соответствует требованиям методических указаний;
- 0 работа не выполнена или отчет не представлен.

Шкала оценивания:

Итоговый балл	0	0,5	0,75	1
Оценка	2	3	4	5

Оценочные средства по курсовой работе

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах.

- 5 баллов выставляется студенту, если работа выполнена в полном объёме с соблюдением необходимой последовательности. Студент работает полностью самостоятельно: подбирает необходимые источники информации, показывает необходимые теоретические знания, практические умения и знания.
- 4 балла выставляется студенту, если задание выполнено в полном объёме и самостоятельно. Допускаются отклонения от необходимой структуры, не влияющие на конечный результат. Студенты используют указанные преподавателем источники информации. Задание показывает знание основного теоретического материала и овладение умениями необходимыми для самостоятельного выполнения работы.
- 3 балла выставляется студенту, если творческое задание выполняется и оформляется студентами при помощи преподавателя и хорошо подготовленных и уже выполнивших на «отлично» данную работу студентов. Студенты демонстрируют знания теоретического материала, но испытывают затруднение в интерпретации материала в практической области.
- 2 балла выставляется студенту, если студенты демонстрирует плохое знание теоретического материала и отсутствие необходимых умений. Руководство

и помощь со стороны преподавателя и хорошо подготовленных студентов неэффективны по причине плохой подготовки студента.

0 – в остальных случаях.

Шкала оценивания

Итоговый балл	0÷2	3	4	5
Оценка	2	3	4	5

Методика проведения: защита курсовых работ проводится в аудитории для практических занятий, выполняется во время самостоятельной работы, на подготовку отводится 1 неделя, время доклада и обсуждения реферата — в течение 10 минут, задания выполняются с использованием справочной и учебно-методической литературы и/или средств коммуникации, результат сообщается на следующий день.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Дальский А.М. [и др.]. Технология конструкционных материалов [Текст]: учебник для студентов машиностроительных специальностей вузов / А.М. Дальский, Т.М. Барсукова, А.Ф. Вязов и др. 6-е изд., испр. и доп. М.: Машиностроение, 2005. 592 с.
- 2. Мещеряков, В.М. Технология конструкционных материалов и сварка [Текст]: учеб. пособие. Ростов-на-Дону: Феникс, 2008. 316 с.

Дополнительная литература:

- 3. Методические указания к выполнению курсовой работы по дисциплине «Технология конструкционных материалов» для студентов направления подготовки бакалавров 15.03.01. «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения/ ФГБОУ ВПО «Воронежский государственный технический университет»; сост Д. И. Бокарев − Электрон. текстовые, граф. дан. Воронеж: ВГТУ, 2021. Изд. № -2021. Режим доступа: 413-2021 Методические указания к выполнению курсовой работы по дисциплине Технология конструкционных материалов
- 4. Методические указания к выполнению лабораторных работ по дисциплине «Технология конструкционных материалов» для студентов направления подготовки бакалавров 15.03.01. «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения/ ФГБОУ ВПО «Воронежский государственный технический университет»; сост Д. И. Бокарев Электрон. текстовые, граф. дан. Во-

ронеж: ВГТУ, 2021. – Изд. № -2021. – Режим доступа: <u>415-2021 Методические указания к выполнению лабораторных работ по дисциплине Технология конструкционных материалов</u>

- 5. Методические указания к выполнению практических занятий по дисциплине «Технология конструкционных материалов» для студентов направления подготовки бакалавров 15.03.01. «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения/ ФГБОУ ВПО «Воронежский государственный технический университет»; сост Д. И. Бокарев Электрон. текстовые, граф. дан. Воронеж: ВГТУ, 2021. Изд. № -2021. Режим доступа: 414-2021 Технология конструкционных материалов. Методические указания к проведению практических занятий
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень ПО, включая перечень лицензионного программного обеспечения:

Microsoft Office 64-bit; OC Windows 7 Pro; PDFCreator; Google Chrome; Mozilla Firefox 81.0 (x64 ru)

Ресурс информационно-телекоммуникационной сети «Интернет» http://www.edu.ru/

Образовательный портал ВГТУ

Информационная справочная система http://window.edu.ru
https://wiki.cchgeu.ru/
Электронный каталог научной библиотеки:
https://cchgeu.ru/university/elektronnyy-katalog/

Современные профессиональные базы данных Ресурс машиностроения Адрес ресурса: http://www.i-mash.ru/Портал машиностроения Адрес ресурса: http://www.mashportal.ru/main.aspx Портал Машиностроение

Адрес pecypca: http://omashinostroenie.com/

Машиностроение: сетевой электронный журнал

Адрес pecypca: http://indust-engineering.ru/archives-rus.html

Библиотека Машиностроителя

Адрес pecypca: https://lib-bkm.ru/14518

инженерный портал В масштабе

Адрес pecypca: https://vmasshtabe.ru/category/mashinostroenie-i-mehanika

Электронный адрес научной библиотеки:

https://cchgeu.ru/university/library/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУ-ЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения обучения по дисциплине используется:

Учебная аудитория для проведения занятий лекционного типа, семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: персональный компьютер с установленным ПО, подключенный к сети Интернет; доска магнитно-маркерная; мультимедийный проектор на кронштейне; экран настенный; учебно-наглядные пособия, обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины.

Лаборатория метрологии, учебная аудитория для проведения занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оборудование: микроскоп Альтами МЕТ 2С; электропечь; копер маятниковый МК-300; машина испытательная ИР-20М-авто; персональный компьютер с установленным ПО, подключенный к сети интернет; ноутбук; учебно-наглядные пособия, обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины.

Помещение для самостоятельной работы. Библиотека (Читальный зал) с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду. Оборудование: персональные компьютеры с установленным ПО, подключенные к сети интернет; принтер; магнитно-маркерная доска.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Технология конструкционных материалов» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение навыков анализа и выбора материалов для изготовления изделий машиностроения заданной формы и технических характеристик. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Освоение материалов дисциплины оценивается на экзамене.

Вид учебных				
занятий	Деятельность студента			
Лекция	Написание конспекта лекций:			
утенция	кратко, схематично, последовательно фиксировать основные			
	положения, выводы, формулировки, обобщения;			
	помечать важные мысли, выделять ключевые слова, термины.			
	Проверка терминов, понятий с помощью энциклопедий, слова-			
	рей, справочников с выписыванием толкований в тетрадь. Обо-			
	значение вопросов, терминов, материала, которые вызывают			
	трудности, поиск ответов в рекомендуемой литературе. Если са-			
	мостоятельно не удается разобраться в материале, необходимо			
	сформулировать вопрос и задать преподавателю на лекции или			
	на практическом занятии.			
Практическое	*			
занятие	спектом лекций, подготовка ответов к контрольным вопросам,			
	просмотр рекомендуемой литературы. Прослушивание аудио- и			
	видеозаписей по заданной теме, выполнение расчетно-графиче-			
	ских заданий, решение задач по алгоритму.			
Лабораторная	Лабораторные работы позволяют научиться применять теорети-			
работа	ческие знания, полученные на лекции при решении конкретных			
	задач. Чтобы наиболее рационально и полно использовать все			
	возможности лабораторных работ для подготовки к ним необ-			
	ходимо: разобрать лекцию по соответствующей теме, ознако-			
	мится с соответствующим разделом учебника, проработать до-			
	полнительную литературу и источники, решить задачи и выпол-			
	нить другие письменные задания.			

Самостоятельн	Самостоятельная работа студентов способствует глубокому				
ая работа	усвоения учебного материала и развитию навыков самообразо-				
	вания. Самостоятельная работа предполагает следующие со-				
	ставляющие:				
	- работа с текстами: учебниками, справочниками, дополнитель-				
	ной литературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олим-				
	пиад.				
Подготовка к	Готовиться к промежуточной аттестации следует систематиче-				
промежуточно	ски, в течение всего семестра. Интенсивная подготовка должна				
й аттестации	начаться не позднее, чем за месяц-полтора до промежуточной				
	аттестации. Данные перед зачетом с оценкой, экзаменом, экза-				
	меном три дня эффективнее всего использовать для повторения				
	и систематизации материала.				

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

			Подпись
No		Дата	заведующего
п/п	Перечень вносимых изменений	внесения	кафедрой,
11/11		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.2 в	31.08.2020	1
	части состава используемого		A P
	лицензионного программного	, (() jonne
	обеспечения, современных		
	профессиональных баз данных и		
-	справочных информационных		
	систем		
2	Актуализирован раздел 8.2 в	31.08.2021	1
	части состава используемого		A A
	лицензионного программного		() hompo-
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных		
	систем		
		,	