Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра конструирования и производства радиоаппаратуры

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине "Электротехника и электроника" для студентов направления подготовки 11.03.03 «Конструирование и технология электронных средств», (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения

Воронеж 2021

Составители: асс. А.С. Костюков д-р техн. наук А.В. Башкиров

Методические указания к выполнению лабораторных работ по дисциплине «Электротехника и электроника» для студентов направления подготовки 11.03.03. «Конструирование и технология электронных средств», (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: А.С. Костюков, А.В. Башкиров. Воронеж: Изд-во ВГТУ, 2021. 24 с.

Издание соответствует требованиям Федерального государственного образовательного стандарта высшего образования по направлению 11.03.03 «Конструирование и технология электронных средств», профилю «Проектирование и технология радиоэлектронных средств», дисциплине «Электротехника и электроника».

Методические указания подготовлены в электронном виде в текстовом редакторе MS Word 2007 и содержатся в файле ELTEH1.pdf

Табл. 1. Ил.9. Библиогр.: 2 назв.

УДК ББК

Рецензент - О. Ю. Макаров, д-р техн. наук, проф. кафедры конструирования и производства радиоаппаратуры ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

ЛАБОРАТОРНАЯ РАБОТА 1 ГАРМОНИЧЕСКОЕ НАПРЯЖЕНИЕ И ТОК В ЭЛЕМЕНТАХ ЦЕПИ R, L, C И ИХ ПОСЛЕДОВАТЕЛЬНОМ СОЕДИНЕНИИ

Цель работы - изучить взаимосвязь гармонических токов и напряжений в элементах цепи и их последовательном соединении.

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Подключите к плате исследуемой цепи (рис. 9) источник напряжения, вольтметр, микроамперметр, коммутатор. Кривыми линиями на рис. 9 показаны соединительные провода с однополюсными вилками. Соедините со стендом генератор АНР 1001 и осциллограф. Откалибруйте измерительные приборы, подготовьте их к измерениям.

На выходе генератора установите такое напряжение, чтобы ток в цепи был равен 1 мА.

Переключатель режимов синхронизации лабораторного стенда установите в положение синхронизации от блока усилителя «БУ» Запишите значения параметров цепи, указанные на плате.

2. На частоте $f_1 = 40$ кГц вычислите реактивные сопротивления емкости X_C , индуктивности X_L и полное сопротивление последовательной RLC цепи Z. Результаты расчета внесите в табл. 1.

Таблица 1

R, Ом	X_L , Ом	Х _С , Ом	Ζ, Ом

Сопротивления элементов цепи

3. Измерьте напряжения и ток в цепи.

3.1. Устанавливая переключатель вольтметра на сменной панели стенда поочередно в положения U_R , U_L , U_C , $U_R+U_L+U_C$, измерьте соответствующие напряжения и ток в цепи I. Результаты занесите в табл. 2.

Таблица 2

Ток и напряжения в цепи

Величина	I,	U_R ,	U_L ,	U _C ,	U,	U _{BBIH} ,	δ,%
	мА	В	В	В	В	В	
Измерения							
Расчет						-	-

3.2. Вычислите, исходя из измеренных значений U_R, U_L, U_C, и занесите в табл. 4 значение напряжения U_{выч} на последовательном соединении элементов R,L,C. Сопоставьте U и U_{выч}, определите относительную погрешность $\delta = |U_{\text{выч}} - U|/U$. Если ошибка превышает 15-20 %, уточните результаты измерений.

3.3. Для измеренного общего напряжения U и известных сопротивлений элементов цепи (табл. 3) вычислите значения тока I, напряжений на элементах цепи U_R , U_L , U_C и внесите их в табл. 2. Сравните результаты расчетов и измерений.

3.4. По величинам U и I определите полное сопротивление цепи Z_{изм} и сопоставьте его с вычисленным значением Z из табл. 3. Определите относительную погрешность определения сопротивления

$$\delta_{z} = |Z - Z_{\mu_{3M}}| / Z_{\mu_{3M}}. \tag{1}$$

4. Измерьте фазовые соотношения между гармоническими колебаниями в цепи.

4.1. Переключатель установите в положение $(U_R+U_L+U_C)$.

4.2. Подайте на входы коммутатора напряжений опорный

сигнал (напряжение источника U) и напряжение на резисторе U_R. Осциллограф подключите к выходу коммутатора и установите **режим внешней синхронизации** от блока усилителей БУ.

Получите устойчивое изображение на экране двух гармонических колебаний, сдвинутых во времени.

Разберитесь, какой осциллограмме соответствует напряжение U, а какой U_R. Измерьте по экрану период колебаний T и сдвиг во времени Δt_R напряжения U_R относительно U, определите знак Δt_R (если U_R опережает по фазе U, то величина Δt_R отрицательна, а иначе положительна).

Определите сдвиг фаз ϕ_R между U_R и U по формуле

$$\varphi_{\rm R} = -\omega \times \Delta t_{\rm R}. \tag{2}$$

Результат занесите в табл. 5.

4.3. Вместо U_R подайте на вход коммутатора напряжение на индуктивности U_L и аналогично предыдущему измерьте смещение по времени Δt_L и сдвиг фаз ϕ_L между U_L и U. Результат внесите в табл. 3.

Таблица 3

Сдвиг фаз	<i>ф</i> _R , рад	ϕ_L , рад	ϕ_C , рад
Эксперимент			
Расчет			

Фазовые соотношения

4.4. Аналогично вместо U_L подайте на вход коммутатора напряжение на емкости U_C , измерьте смещение по времени Δt_C и сдвиг фаз ϕ_C между U_C и U, запишите полученное значение в табл. 5.

4.5. Используя значения сопротивлений в табл. 3, проведите **расчет** сдвигов фаз ϕ_R , ϕ_L , ϕ_C между напряжениями на элементах и общим напряжением цепи, результаты занесите в табл. 3. Сравните результаты. 4.5. Полагая начальную фазу источника напряжения равной нулю, определите по результатам измерений из табл. 5 начальные фазы тока ψ_i в цепи и напряжений на резисторе ψ_R , катушке индуктивности ψ_L и конденсаторе ψ_C . Занесите их в табл. 4.

Таблица 4

Начальные фазы колебаний

ψ _e , рад	ψі, рад	ψ_R , рад	ψ_L , рад	ψ _C , рад
0				

4.6. По результатам измерений определите сдвиг фаз ф между общим напряжением и током в цепи.

4.7. Проанализируйте полученные результаты. При больших (более 15-20 %) погрешностях повторите измерения.

5. По результатам измерений в пунктах 3 и 4 с помощью линейки и транспортира постройте векторную диаграмму тока I и напряжений U_R, U_L, U_C, U. Сложите графически векторы U_R, U_L и U_C. Сравните результат с вектором U.

6. Тремя способами вычислите среднюю мощность, потребляемую цепью от источника:

Р₁ - по величинам напряжения U и тока I с учетом сдвига фаз между ними;

P₂ - по величине тока I и значениям сопротивлений элементов цепи;

P₃ - по значениям напряжений на элементах и их сопротивлениям.

Определите среднее значение потребляемой мощности

$$P_{cp} = (P_1 + P_2 + P_3)/3. \tag{3}$$

Результаты занесите в табл. 5.

Если возникают значительные погрешности, проанализи-

руйте возможные причины.

Таблица 5

Потребляемая мощность

Р ₁ , Вт	Р2, Вт	Р ₃ , Вт	Р _{ср} , Вт

ДЛЯ ПЫТЛИВЫХ

7. Увеличьте частоту источника до $f_2=80$ кГц. Изменяя уровень сигнала источника, добейтесь, чтобы ток в цепи остался прежним.

Измерьте напряжение U на последовательном соединении и сдвиг фаз φ между напряжением и током в цепи. По резуПльтатам измерений вычислите модуль полного сопротивления цепи Z и потребляемую мощность P. Результаты занесите в табл. 6 и сравните с полученными ранее на частоте f_1 .

Таблица 6

Результаты измерений на частоте f₂

I мА	U B	ф рад	Z Ом	Р Вт

8. При экспериментальном значении напряжения цепи U из табл. 8 на частоте 80 кГц проведите расчет сопротивления цепи Z, тока I, сдвига фаз φ и мощности P. Сравните результаты расчета и эксперимента.

ЛАБОРАТОРНАЯ РАБОТА 2 ПОСЛЕДОВАТЕЛЬНЫЙ КОЛЕБАТЕЛЬНЫЙ КОНТУР

Цель работы - изучить резонансные и частотноизбирательные свойства и характеристики последовательного колебательного контура.

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Подключите к сменной плате исследуемой цепи, схема которой показана на рис. 23, источник напряжения и миллиамперметр. Соедините генератор с входом блока усилителей стенда. Установите тумблер Т1 в положение 2 и тумблер Т2 в положение 1.

Все измерения проводите при подключенном к емкости контура вольтметре ВК7-26.

Изменяя частоту генератора в интервале 120-150 кГц, добейтесь максимального тока в контуре при постоянном уровне входного сигнала. Установите на выходе источника напряжения усилителя стенда уровень сигнала, при котором максимальный ток в контуре будет не более 5 мА.

2. Измерьте резонансную частоту контура.

Отключите добавочное сопротивление R1 (тумблер T1 установите в положение 2) и сопротивление нагрузки R2 (тумблер T2 - в положение 1). Изменяя частоту генератора, добейтесь максимального тока в контуре, сохраняя постоянным уровень входного сигнала. По шкале генератора определите значение резонансной частоты f_0 .

3. Исследуйте зависимость от частоты тока и входного сопротивления последовательного колебательного контура.

Не меняя положение тумблеров T1 и T2, измерьте ток в цепи при неизменном входном напряжении на частотах от $0.9f_0$ до $1.1f_0$ с шагом не более 1 кГц (всего 20-30 точек).

Определите абсолютную расстройку контура на каждой из частот. Результаты занесите в табл. 7 с соответствующим числом столбцов.

По результатам измерений вычислите входное сопротивление контура на каждой из частот и запишите полученные значения в табл. 14. Постройте графики зависимостей I(Δf) и Z(Δf). Проанализируйте полученные результаты.

Рис. 2. Схема исследуемой цепи

Из табл. 10 и графика $Z(\Delta f)$ определите сопротивление потерь колебательного контура r. Чем оно обусловлено, от чего зависит?

Таблица 7

F, кГц		-	
$\Delta f, \kappa \Gamma$ ц			
U _{BX} , B			
I, мА			
Ζ, Ом			

. Зависимость от частоты тока и сопротивления контура

4. Изменяя, как и в предыдущем случае, частоту генератора, снимите амплитудно-частотную характеристику (АЧХ) контура - зависимость выходного напряжения Uвых от абсолютной расстройки Δf при неизменном уровне входного напряжения Uвх.

По данным эксперимента вычислите коэффициент передачи $H=U_{\text{вых}}/U_{\text{вх}}$. Результаты занесите в табл. 8.

Обратите внимание на то, что подключение вольтметра к выходу контура (к конденсатору) изменяет резонансную частоту по сравнению с предыдущим значением. Это обусловлено влиянием паразитной входной емкости прибора (20-40 пФ).

Постройте график АЧХ $H(\Delta f)$ и определите полосу пропускания П и добротность Q контура. Результаты запишите в табл. 9.

Таблица 8

	1 1	<u> </u>	
F, кГц			
Δ f, кГц			
U_{BX}, B			
U _{вых} , В			
Н			
Н _{расч}			
ΔΗ			

Амплитудно-частотная характеристика контура

5. Рассчитайте теоретически зависимость $H(\Delta f)$ (через обобщенную расстройку), используя экспериментальные значения резонансной частоты f_0 и полосы пропускания П.

Определите погрешность $\Delta H = H_{pacy}$ -Н. Результаты внесите в табл. 15. На построенный ранее график АЧХ нанесите расчетную кривую. Сравните результаты.

6. Исследуйте влияние добавочного сопротивления потерь R_1 контура на его добротность методом "трех отсчетов". Для этого тумблер T_1 установите в положение 1 (T2 остается в положении 1), вольтметр подключите к емкости контура.

Изменяя частоту генератора, настройтесь в резонанс и измерьте резонансное выходное напряжение U_{pes} . Определите величину выходного напряжения на границе полосы пропускания $U_{rp}=U_{pes}/\sqrt{2}$.

Уменьшая частоту генератора относительно резонансной, добейтесь, чтобы вольтметр показывал напряжение, равное U_{rp} . По шкале генератора определите нижнее значение частоты на границе полосы пропускания f_{min} . Затем, увеличивая частоту, аналогично определите верхнюю частоту на границе полосы пропускания f_{max} .

Не забывайте контролировать постоянство входного напряжения при всех измерениях. Полоса пропускания контура с добавочным сопротивлением равна

$$\Pi_{\text{доб}} = f_{\text{max}} - f_{\text{min}} .$$
 (4)

Определите добротность контура Q_{доб} с добавочным сопротивлением. Результаты внесите в табл. 16.

Таблица 9

П, кГц	Q	П _{доб} , кГц	Qдоб	П _н ,, кГц	$Q_{\rm H}$

Полоса пропускания и добротность контура

7. Аналогично предыдущему методом трех отсчетов определите влияние на добротность контура сопротивления нагрузки, подключенного к конденсатору. Для этого тумблер T_1 переведите в положение 2 (добавочное сопротивление отключено), а тумблер T_2 - в положение 2 (подключено сопротивление нагрузки R2). Измерьте граничные частоты полосы пропускания, определите полосу пропускания $\Pi_{\rm H}$ и добротность контура $Q_{\rm H}$.

Результаты запишите в табл. 16, сравните результаты.

ДЛЯ ПЫТЛИВЫХ

8. По данным эксперимента определите паразитную емкость вольтметра, используя изменение резонансной частоты по максимуму тока в контуре при отключении и подключении вольтметра ВК7-26 к емкости контура.

9. С помощью двухлучевого осциллографа снимите фазочастотную характеристику коэффициента передачи контура. Для этого один вход осциллографа подключите на вход контура (к источнику напряжения), а второй - к выходу (к емкости) контура. Изменяя частоту генератора в окрестности резонанса, как это делалось в пункте 4, установите устойчивое изображение двух гармонических колебаний и определите сдвиг фаз между ними.

Постройте график зависимости сдвига фаз между выходным и входным сигналами от абсолютной расстройки. Проделайте те же измерения с включенным добавочным сопротивлением, сравните результаты.

КОНТРОЛЬНЫЕ ЗАДАЧИ

 Рассчитайте комплексный коэффициент передачи, АЧХ и ФЧХ четырехполюсников, схемы которых показаны на рис. 3, постройте их графики.

2. Определите полосу удержания четырехполюсников на рис. 24а, рис. 24б и рис. 24д.

3. Определите полосу пропускания четырехполюсников на рис. 24в, рис. 24г и рис. 24е.

4. Рассчитайте коэффициент прямоугольности четырехполюсников на рис. 24.

5. По данным, приведенным в табл. 10, определите граничные частоты полосы пропускания последовательного колебательного контура с параметрами L, C, r, резонансной частотой f_c и добротностью Q.

Таблица 10

Вариант	<i>L</i> мкГн	С пФ	<i>г</i> Ом	$f_{_o}$ МГц	Q
1	180	-	15	1,5	-
2	-	200	12	1	-
3	140	80	15	-	-
4	200	-	10	-	80
5	-	160	8	-	60
6	150	-	14	-	30
7	100	120	-	-	50
8	140	-	6	1.5	-
9	-	150	18	2	-
10	-	180	12	-	40

6. Определите эквивалентную добротность последовательного колебательного контура из задачи 5 при подключении к его емкости сопротивления нагрузки $R_{\mu} = 50$ кОм.

ЛАБОРАТОРНАЯ РАБОТА 3 СПЕКТРАЛЬНЫЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ СИГНА-ЛОВ

Цель работы: исследование связи формы и параметров периодических сигналов с их амплитудными и фазовыми спектрами.

ОПИСАНИЕ ПРОГРАММЫ СПЕКТРАЛЬНОГО АНАЛИЗА

Рабочее окно программы для исследования спектров периодических сигналов показано на рис. 4. В его верхней части изображается временная диаграмма исследуемого сигнала, а в

нижней – спектры амплитуд и фаз. Рабочее разрешение экрана 800×600 пиксель.

В правом верхнем углу расположена панель управления программой. На ней расположен переключатель для выбора сигналов и регуляторы их параметров. Все изменения немедленно отображаются на временной диаграмме.

После установки требуемых параметров нажимается кнопка «Вычисление спектров» и на графиках отображаются спектры амплитуд и фаз сигналов. Численные значения амплитуд и фаз первых двадцати гармоник выдаются в таблицу в правой нижней части экрана.

Программа обеспечивает синтез (суммирование гармоник) сигнала по его спектру. Для этого регуляторами задаются начальный номер гармоники и их количество.

Затем нажатием кнопки «Синтез» на временной диаграмме отображается полученная функция времени. Кнопкой «сброс»

график очищается, и переход в режим синтеза возможен после нажатия кнопки «Вычисление спектров».

Программа определяет ширину спектра сигнала при заданном уровне мощности, регулятор которого находится в центре рабочего окна.

Регистрация результатов исследований производится копированием экрана монитора через системный буфер Windows нажатием клавиши «Print screen». После этого изображение вводится в заранее открытый файл редактора Word для формирования отчета по лабораторной работе.

Пример такого перехвата экрана показан на рис. 28.

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Исследуйте спектр гармонического сигнала с амплитудой U = 10B, периодом T = 1mc при задержке $\Delta t = 0$. Установите задержку $\Delta t = 25\%$ от периода сигнала T. Затем установите $\Delta t = -25\%$ периода.

Сравните спектры амплитуд и фаз этих трех сигналов. Проверьте свойства запаздывания и симметрии сигналов.

2. Выберите пилообразный сигнал при U = 10B, T = 1mc, $\Delta t = 0$, исследуйте его спектры амплитуд и фаз. Обратите внимание на похожесть формы пилообразного и гармонического сигналов. Сравните их спектры.

Установите задержку $\Delta t = 25\%$ от периода. Сравните спектры смещенного и исходного сигналов, проверьте свойство (теорему) смещения.

3. Исследуйте спектры амплитуд и фаз периодической последовательности прямоугольных импульсов при исходных значениях параметров U = 10B, T = 1mc, $\Delta t = 0$, скважности сигнала $Q = T/\tau = 2$ (τ - длительность импульса) и длительности фронта $t_{\phi} = 0$ в процентах от τ .

Увеличьте период сигнала до T = 2mc. Как изменяются спектры амплитуд и фаз? Проверьте свойство изменения временного масштаба сигнала. Рассмотрите влияние на спектры

амплитуд и фаз длительности импульсов, изменяя их скважность $Q = T / \tau$ от 2 до 10.

Как изменяется при этом ширина спектра при учитываемой доле мощности 90% (III_{90}) и 99% (III_{99}), значения которых внесите в табл. 11. Определите ширину спектра III_0 по положению первого нуля огибающей спектра.

Постройте графики зависимости ширины спектра от длительности импульса.

Таблица 11

~				
Q	2	3	••••	10
τ, мс				
Ш90, кГц				
Ш99, кГц				
Ш ₀ , кГц				

4. Проанализируйте спектр пачки из двух импульсов при скважности Q = 10 и произвольной задержке. Этот сигнал можно рассматривать как сумму двух импульсных потоков той же длительности (скважности) при соответствующих смещениях.

Установите эти последовательности прямоугольных импульсов в моделирующей программе, определите их спектры амплитуд и фаз. Для третьей гармоники проверьте свойство линейности спектров. Сделайте выводы. Сравните ширину спектра пачки импульсов и одиночной последовательности.

5. Установите импульсную последовательность при скважности Q = 5. Проведите синтез этого сигнала при числе гармоник 5, 10, и 30. Сравните результаты, сделайте выводы.

ДЛЯ ПЫТЛИВЫХ

6. Исследуйте влияние на спектры импульсных сигналов длительности их фронта и среза. Как они влияют на ширину спектра сигнала? 7. Проведите имитационное моделирование в программах MicroCAP или WorkBench спектров произвольных сигналов, например, последовательностей прямоугольных импульсов.

8. Создайте модель фильтра нижних (верхних) частот и проанализируйте изменения спектров проходящих через нее сигналов (прямоугольных импульсов).

9. Проведите численные расчеты спектров рассмотренных в лабораторной работе сигналов в программе MathCAD.

МОДЕЛИРОВАНИЕ СПЕКТРОВ ПЕРИОРДИЧЕСКИХ СИГ-НАЛОВ

Исследуйте спектры амплитуд сигналов при прохождении последовательности прямоугольных импульсов через фильтрующие цепи. Применительно к RC фильтру нижних частот модель представлена на рис. 5.

Рис. 5

Проанализируйте частотные характеристики цепи и временные диаграммы сигналов на входе и выходе.

Сравните спектры амплитуд входного и выходного сигналов, проанализируйте влияние параметров цепи, сделайте соответствующие выводы.

Объясните характер наблюдаемых спектров и их отличие от теоретического вида. Как форма спектров связана с длиной реализации сигнала, частотой квантования (этот вопрос выходит за рамки курса ОТЦ)? Аналогично рассмотрите прохождение того же сигнала через простейший RC фильтр верхних частот и последовательный RLC колебательный контур, проведите анализ результатов моделирования. Соответствующие модели показаны на рис. 6 и 7 соответственно.

Рис. 6

Рис. 7

Проведите исследования спектров сигналов с использованием программы MATHCAD на базе функции fft.

Функция fft(u) реализует быстрое преобразование Фурье (БПФ) вида

$$S_n = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} u_i \cdot \exp\left(j2\pi \frac{n}{N} \cdot i\right), \qquad (5)$$

где u_i – отсчеты сигнала u(t) в моменты времени t_i =i× Δt , i – номер отсчета, Δt – интервал дискратизации сигнала по времени на периоде колебаний T=N× Δt , N = 2^m – число отсчетов на периоде сигнала (m – целое число), S_n – результат БПФ, комплексное число, определяющее n-ю гармонику сигнала.

Постоянная составляющая спектра сигнала U₀ равна

$$U_0 = \frac{S_0}{\sqrt{N}},\tag{6}$$

а амплитуда n-й гармоники U_n и ее начальная фаза ψ_n определяются выражениями:

$$U_n = \frac{2|S_n|}{\sqrt{N}},\tag{7}$$

$$\psi_n = -\arg(S_n). \tag{8}$$

Изменяя параметры сигнала, исследуйте их влияние на спектры амплитуд и фаз, сравните результаты с полученными с помощью пакета MICROCAP.

С помощью пакета MATHCAD рассмотрите влияние изменения амплитуд и начальных фаз гармоник последовательности прямоугольных импульсов на форму временной диаграммы.

КОНТРОЛЬНЫЕ ЗАДАЧИ

6.1. Используя данные табл. 12, из временной диаграммы рис. 33 определите аналитическое выражение временной зависимости u(t) на интервале одного периода колебаний. Рассчитайте коэффициенты ряда Фурье и постройте график спектра амплитуд для первых пяти гармоник.

Таблица 12

Вариант	E_1 B	E_2 B	E_3 B	Т мс
1	20	10	0	40
2	20	0	10	20
3	10	20	0	80
4	10	0	20	40
5	-20	10	0	50
6	-20	0	10	40
7	20	20	10	20
8	10	20	10	40
9	20	10	20	50
10	10	20	20	80

6.2. Определите комплексные спектральные плотности, спектры амплитуд и фаз одиночных сигналов, показанных на рис. 9, постройте их графики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Общая электротехника и электроника [Текст]: учеб. пособие. В 3 ч. Ч. 1. Линейные электрические цепи / Б.В. Матвеев. - Воронеж: ГОУВПО «Воронежский государственный технический университет 2006. - 241 с.

2. Матвеев Б.В. Общая электротехника и электроника [Текст]: учеб. пособие/ Б.В. Матвеев. - Воронеж: ГОУВПО «Воронежский государственный технический университет, 2009. - 164 с.

СОДЕРЖАНИЕ

Лабораторная работа № 1	.2
Лабораторная работа № 2	.8
Лабораторная работа №31	14
Библиографический список	22

МЕТОДИЧЕСКОЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Электротехника и электроника» для студентов направления подготовки 11.03.03 «Конструирование и технология электронных средств», (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения

> Составители: Костюков Александр Сергеевич Башкиров Алексей Викторович

Компьютерный набор А.С. Костюков

Подписано к изданию Уч.-изд. л.

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14