МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный технический университет» в городе Борисоглебске

УТВЕРЖДАЮ

Директор филиала

/В.В. Григораш/

31 августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Проектирование цифровых устройств обработки сигналов»

Направление подготовки <u>11.03.03 Конструирование и технология</u> <u>электронных средств</u>

Профиль Проектирование и технология радиоэлектронных средств

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года 11 месяцев

Форма обучения Очная /Заочная

 Год начала подготовки
 2021

 Автор программы
 А.В. Турецкий

 Заведующий кафедрой естественнонаучных дисциплин
 Л.И. Матвеева

 Руководитель ОПОП
 В.В. Благодарный

Борисоглебск 2021

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цели дисциплины: Изучение методов анализа и синтеза устройств цифровой обработки сигналов.

1.23адачи освоения дисциплины:

- освоение основ фундаментальной теории цифровой обработки сигналов (ЦОС) в части базовых методов и алгоритмов ЦОС, инвариантных относительно физической природы сигнала, и включающих в себя: математическое описание (математические модели) линейных дискретных систем (ЛДС) и дискретных сигналов, включая дискретное и быстрое преобразование Фурье (ДПФ и БПФ);
- рассмотрение структурных схем цифровых фильтров, сигнальных процессоров;
- рассмотрение реализации устройств цифровой обработки сигналов на примере процессора с фиксированной запятой.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «<u>Проектирование цифровых устройств обработки сигналов</u>» относится к дисциплинам по выбору <u>части, формируемой участниками образовательных отношений</u>, блока Б1 учебного плана.

3 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Проектирование цифровых устройств обработки сигналов» направлен на формирование следующих компетенций:

ПК-2 - Способен выполнять проектирование радиоэлектронных устройств в соответствии с техническим заданием с использованием средств автоматизации проектирования

ПК-4 - Способен подготавливать конструкторскую и технологическую документацию на радиоэлектронные устройства

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-2	знать этапы проектирования цифровых устройств обработки сигналов, от постановки технического задания и технического предложения, до оформления полного комплекта технической документации, с использованием современных систем автоматизации проектирования
	уметь по техническому заданию проектировать цифровые устройства обработки сигналов, проводить измерения с выбором технических средств и обработкой сигналов.

	владеть современными методами проектирования цифровых устройств обработки сигналов. Навыками 3D моделирования конструкции, позволяющими увидеть результат проведенных расчетов.
ПК-4	знать конструкторскую и технологическую документацию на цифровые устройства обработки сигналов уметь разрабатывать конструкторскую и технологическую документацию на цифровые устройства обработки сигналов.
	владеть современными программными комплексами разработки конструкторской и технической документации цифровых устройства обработки сигналов.

4 ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Проектирование устройств обработки сигналов» составляет 7 зачётных единиц. Распределение трудоемкости дисциплины по видам занятий цифровых

Очная форма обучения

Вид учебной работы	Всего	Семестры
	часов	8
Аудиторные занятия (всего)	84	84
В том числе:		
Лекции	24	24
Практические занятия (ПЗ)	12	12
Лабораторные работы (ЛР)	48	48
Самостоятельная работа	141	141
Курсовой проект	+	+
Контрольная работа		
Вид промежуточной аттестации – экзамен	27	27
Общая трудоемкость час	252	252
зач. ед.	7	7

Заочная форма обучения

эао тал форма обу	ТСПИЛ	
Вид учебной работы	Всего	Семестры
	часов	10
Аудиторные занятия (всего)	24	24
В том числе:		
Лекции	8	8
Практические занятия (ПЗ)	8	8
Лабораторные работы (ЛР)	8	8
Самостоятельная работа	219	219
Курсовой проект	+	+
Контрольная работа		

Вид промежуточной аттестации -	9	9	
Общая трудоемкость час		252	252
	зач. ед.	7	7

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

Очная форма ооучения									
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час		
1	Аппаратные сред- ства цифровой об- работки сигналов	Обобщенная структура систем ЦОС. Особенности цифровой обработки сигналов в режиме реального времени. Понятие квантования сигналов по времени. Кодирование и декодирование сигналов в системах ЦОС	6	3	12	35	56		
2	Дискретизация и восстановление сигналов	Математические модели дискретных сигналов и систем. Спектральное представление сигналов. Теорема Котельникова. Дискретизация и восстановление непрерывных сигналов. Последовательности. Выбор частоты дискретизации.	6	3	12	35	56		
3	Преобразование дискретных сигна-лов	Спектры дискретизированных сигналов, квантование сигналов. Характеристики квантования. Аналого-цифровые и цифро-аналоговые преобразователи. Алгоритмы адаптивного предсказания и их применение в цифровых системах управления и связи	6	3	12	35	56		
4	Структурные схемы построения сигнальных процессоров. Обзор системы команд сигнальных процессоров.	ЦОС в задачах фильтрации сигналов Теория и расчет ЦФ с импульсной характеристикой конечной длины Теория и расчет ЦФ с бесконечной импульсной характеристикой. Программные средства разработки и отладки систем на базе сигнальных процессоров.	6	3	12	36	57		
	L	Итого	24	12	48	141	225		

Заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
-------	-------------------	--------------------	------	--------------	--------------	-----	------------

		обработки сигналов в режиме реального времени. Понятие квантования сигналов по времени. Кодирование и декодирование сигналов в системах ЦОС	2	2	2	55	61
ВС	Цискретизация и восстановление вигналов	Математические модели дискретных сигналов и систем. Спектральное представление сигналов. Теорема Котельникова. Дискретизация и восстановление непрерывных сигналов. Последовательности. Выбор частоты дискретизации.	2	2	2	55	61
ді	Іреобразование цискретных сигна- пов	Спектры дискретизированных сигналов, квантование сигналов. Характеристики квантования. Аналого-цифровые и цифро-аналоговые преобразователи. Алгоритмы адаптивного предсказания и их применение в цифровых системах управления и связи	2	2	2	55	61
по на ро ко	Структурные схемы построения сиг- построения сиг- пальных процессо- нов. Обзор системы поманд сигнальных процессоров.	ЦОС в задачах фильтрации сигналов Теория и расчет ЦФ с импульсной характеристикой конечной длины Теория и расчет ЦФ с бесконечной импульсной характеристикой. Программные средства разработки и отладки систем на базе сигнальных процессоров.	2	2	2	54	60

Практическая подготовка при освоении дисциплины учебным планом не предусмотрена.

5.2 Перечень лабораторных работ

- 1. Квадратурное преобразование частоты
- 2. Аналого-цифровое преобразование
- 3. Цифро-аналоговое преобразование
- 4. Устройства формирования частоты
- 5. Протоколы передачи сигналов
- 6. Цифровая обработка широкополосных сигналов
- 7. Проектирование высокоскоростных электронных схем

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ)

И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 8 семестре для очной формы обучения на в 10 семестре для заочной формы обучения. Примерная тематика курсового проекта: «Проектирование цифровых устройств обработки сигналов».

Темой курсового проекта является проектирование цифрового устройства обработки сигналов по предложенному варианту. Курсовые проекты исследовательского профиля связаны с теоретическими и экспериментальными исследованиями в области конструирования электронных средств.

Примерная тематика курсового проекта:

- 1. Исследование последовательного и параллельного регистров
- 2. Исследование сдвигового регистра
- 3. Исследование схемы инвертирующего операционного усилителя
- 4. Исследование схемы мультивибратора на операционных усилителях
- 5. Исследование триггеров
- 6. Меры качества разработки цифровой интегральной схемы
- 7. Моделирование алгебраического сумматора на операционных усилителях
- 8. Моделирование сложных логических схем
- 9. Проблематика проектирования комбинационных схем
- 10. Проектирование АЦП параллельного типа
- 11. Проектирование АЦП последовательного приближения
- 12. Проектирование вычитающего двоичного счетчика
- 13. Проектирование демультиплексора
- 14. Проектирование дешифратора
- 15. Проектирование микропроцессорных устройств обработки данных
- 16. Проектирование мультиплексора
- 17. Проектирование оперативных запоминающих устройств
- 18. Проектирование печатных плат
- 19. Проектирование пирамидального дешифратора
- 20. Проектирование постоянных запоминающих устройств
- 21. Проектирование преобразователя кодов
- 22. Проектирование простейших логических схе
- 23. Проектирование специализированных арифметико-логических устройств
- 24. Проектирование сумматора параллельных операндов с последовательным переносом
- 25. Проектирование сумматора с условным переносом
- 26. Проектирование суммирующего двоичного счетчика
- 27. Проектирование схем с внутренней синхронизацией
- 28. Проектирование цифро-аналогового преобразователя
- 29.Проектирование цифровой схемы сравнения двухразрядных двоичных чисел
- 30.Проектирование четырехразрядного сумматора с параллельным переносом
- 31.Проектирование шифратора
- 32. Разработка вычислителя контрольной суммы

- 33. Разработка генератора аналоговых сигналов
- 34. Разработка комбинационных логических элементов на КМОП
- 35. Разработка логических схем последовательностного типа
- 36. Разработка логического анализатора
- 37. Разработка печатных плат
- 38.Синтез и исследование триггерных схем произвольных типов
- 39. Стратегии реализации цифровых интегральных схем
 - Задачи, решаемые при выполнении курсового проекта:
 - Расчет шумовых параметров
 - Расчет входных цепей
 - Расчет резонансных усилителей
 - Расчет преобразователей
 - Расчет амплитудных детекторов
 - Расчет частотных и фазовых детекторов
 - Расчет характеристик нелинейности линейного тракта РПУ
 - Расчет характеристик АРУ

Курсовой проект включает в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	тирования цифровых устройств обработки		срок, предусмотренный в рабочих	бот в срок, преду-
	уметь по техниче- скому заданию про- ектировать цифро-	*		Невыполнение ра- бот в срок, преду- смотренный в ра-

	вые устройства обработки сигналов,		программах	бочих программах
	проводить измерения			
	с выбором техниче-			
	ских средств и обра-			
	боткой сигналов.			
		Решение прикладных задач в конкретной предметной		Невыполнение ра- бот в срок, преду-
	проектирования	области		смотренный в ра-
	цифровых устройств		программах	бочих программах
	обработки сигналов.			
	Навыками 3D моде-			
	лирования кон-			
	струкции, позволя-			
	ющими увидеть ре-			
	зультат проведенных			
THC 4	расчетов.		D C	T.T.
ПК-4		Активная работа на лабо-	Выполнение работ в	
		раторных и практических		бот в срок, преду-
		занятиях, отвечает на тео-	_	смотренный в ра-
	на цифровые устройства обработ-	ретические вопросы при	программах	бочих программах
	ки сигналов	защите.		
		Решение стандартных	Выполнение работ в	Невыполнение ра-
		практических задач.		бот в срок, преду-
	технологическую	прикти теским зиди п		смотренный в ра-
	документацию на		программах	бочих программах
	цифровые устрой-		1 1	1 1
	ства обработки сиг-			
	налов.			
	владеть современ-	Решение прикладных задач		
		в конкретной предметной		бот в срок, преду-
	комплексами разра-	области.	ренный в рабочих	смотренный в ра-
	ботки конструктор-		программах	бочих программах
	ской и технической			
	документации циф-			
	ровых устройства			
	обработки сигналов.			

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения и в 10 семестре для заочной формы обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценива- ния	Отлично	Хорошо	Удовл.	Неудовл.
ПК-2	знать этапы проектирования цифровых устройств обработки сигналов, от постановки технического задания и технического предложения, до оформления полного		Выполнение теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

	,				•	
	комплекта технической документации, с использованием современных систем автоматизации проектиро-					
	вания уметь по техническому заданию проектировать цифровые устройства обработки сигналов, проводить измерения с выбором технических средств и обработкой сигналов.	стандарт- ных прак- тических	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемон- стрирован верный ход решения всех, но не получен верный ответ во всех зада- чах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	устройств обработки сигналов. Навыками 3D	приклад- ных задач в конкретной	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемон- стрирован верный ход решения всех, но не получен верный ответ во всех зада- чах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПК-4	знать конструкторскую и технологическую документацию на цифровые устройства обработки сигналов	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	технологическую до- кументацию на циф- ровые устройства об- работки сигналов.	стандарт- ных прак- тических задач	Задачи ре- шены в пол- ном объеме и получены верные от- веты	решения всех, но не получен верный ответ во всех зада- чах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	плексами разработки	приклад- ных задач в конкретной предметной области	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемон- стрирован верный ход решения всех, но не получен верный ответ во всех зада- чах	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Дискретный (цифровой) фильтр – это:

- а) соответствующая компьютерная программа
- б) цифровой сигнальный процессор
- в) специализированная БИС
- г) все вышеперечисленное

2. Системы цифровой обработки сигналов должны обладать свойствами:

- а) линейности
- б) устойчивости
- в) физической реализуемости
- г) всеми вышеперечисленными свойствами

3. Рекурсивный фильтр является:

- а) устойчивой системой
- б) физически реализуемой системой
- в) системой с обратной связью
- г) трансверсальной системой

4. Цифровой фильтр не содержит в своей структуре следующего элемента (укажите лишнее):

- а) сумматор
- б) интегратор
- в)умножитель
- г) элемент единичной задержки

5. Цифровой единичный импульс в цифровой системе – это аналог:

- а) единичной функции в аналоговой системе
- б) функции Хэвисайда в аналоговой системе
- в) дельта-функции Дирака в аналоговой системе
- г) ступенчатой функции в аналоговой системе

6. Комплексная дискретная экспонента обладает свойствами: а) уменьшения амплитуды функции

- б) модуль функции равен единице
- в) фаза функции нарастает по линейному закону
- г) верно
- б) и в)

7. Порядок цифрового фильтра определяется:

- а) числом элементов суммирования
- б) числом компонент импульсной характеристики
- в) числом отсчетов выходного сигнала
- г) числом элементов единичной задержки

8. Импульсной характеристикой цифрового фильтра является:

- а) его реакция на единичный скачок
- б) его реакция на единичный импульс
- в) его реакция на дельта-функцию
- г) его реакция на комплексную экспоненту

9. КИХ-фильтр характеризуется свойствами (укажите несколько):

- а) имеет бесконечное число отсчетов импульсной характеристики
- б) имеет конечное число отсчетов импульсной характеристики
- в) является синонимом рекурсивного фильтра
- г) является синонимом нерекурсивного фильтра

10. Частотная характеристика цифрового фильтра:

- а) является периодической непрерывной функцией с периодом 2π
- б) является периодической дискретной функцией с периодом 2π
- в) является дискретной непериодической функцией
- г) является непрерывной непериодической функцией.

11. Z-преобразование преобразует:

- а) дифференциальное уравнение в разностное уравнение дискретной системы
 - б) разностное уравнение дискретной системы в дифференциальное
- в) алгебраическое уравнение в разностное уравнение дискретной системы
 - г) разностное уравнение дискретной системы в алгебраическое

12. Системная (передаточная) функция цифрового фильтра связана с его импульсной характеристикой:

- а) прямым преобразованием Фурье
- б) обратным преобразованием Фурье
- в) прямым

Z-преобразованием

г) билинейным Z-преобразованием

13. При использовании одностороннего Z-преобразования необходимо учитывать:

- а) набор граничных условий
- б) набор начальных условий
- в) набор начальных и граничных условий
- г) набор разностных уравнений

14. Подынтегральная функция в обратном Z-преобразовании имеет вид:

- a) $X(z)zn \square 1$
- б) $X(z)z \square 1$
- $\mathbf{B}) X(z)$
- Γ) X(z)zn

15. Обратное Z-преобразование можно вычислить следующими методами (укажите несколько):

- а) используя теорему о вычетах
- б) методом контурного интегрирования
- в) методом разложения на простые дроби
- г) методом деления числителя на знаменатель

16. Периодическому дискретному сиг-

налу соответствует:

- а) дискретный спектр
- б) периодический спектр
- в) дискретный периодический спектр
- г) монотонно убывающий спектр

17. Система дискретных экспоненциальных функций (базис ДПФ) обладает следующими свойствами:

- а) симметрией
- б) мультипликативностью
- в) периодично-

стью

- г) всеми вышеперечисленными свойствами
- **18.** Свойство симметрии ДПФ сигнала, заданного N отсчетами, означает: а) спектр сигнала симметричен относительно N
- б) спектр сигнала сопряженно симметричен относительно N
- в) спектр сигнала симметричен относительно $N \ 2$
 - Γ) спектр сигнала сопряженно симметричен относительно N 2

19. Алгоритм БПФ с прореживанием по времени основан:

- а) на разбиении входной последовательности на две последовательности, состоящие из первых отсчетов $(0-N\,2)$ и остальных отсчетов
- б) на разбиении входной последовательности на две последовательности с четными и нечетными номерами
- в) на разбиении выходной последовательности на две последовательности с четными и нечетными номерами
- г) на разбиении выходной последовательности на две последовательности меньших размеров

20. Рекурсивный фильтр – устойчив, если:

- а) все полюсы функции H(z) лежат внутри круга единичного радиуса
- б) все полюсы функции H(z) лежат вне круга единичного радиуса
- в) хотя бы один полюс функции H(z) лежат внутри круга единичного радиуса
 - г) хотя бы один полюс расположен на единичной окружности

21. Прямая форма реализации структуры построения цифрового фильтра основана на анализе:

- а) специфической формы записи системной функции
- б) импульсной характеристики цифрового фильтра
- в) разностного уравнения цифрового фильтра
- г) частотной характеристики цифрового фильтра

22. Структуру построения цифрового фильтра называют канонической, если:

- а) число используемых элементов единичной задержки равно порядку системной функции
- б) число используемых элементов единичной задержки одинаково в рекурсивной и

нерекурсивной ветвях фильтра

в) число используемых сумматоров равно порядку системной функции

- г) число используемых умножителей равно порядку системной функции
- 23. Каскадная структура построения цифрового фильтра состоит:
- а) последовательно соединенных блоков первого порядка
- б) параллельно соединенных блоков первого порядка
- в) последовательно соединенных блоков первого или второго порядка
- г) параллельно соединенных блоков первого или второго порядка
- 24. Биквадратная структура цифрового блока представляет собой:
- а) нерекурсивный фильтр второго порядка
- б) рекурсивный фильтр второго порядка в канонической форме
 - в) рекурсивный фильтр второго порядка
 - г) рекурсивный фильтр четвертого порядка

25. КИХ-фильтры имеют следующие преимущества по сравнению с БИХ- фильтрами (укажите несколько):

- а) способны аппроксимировать аналоговые прототипы
- б) не требуют проверки на устойчивость
 - в) имеют большее
- быстродействие г) имеют строго линейную ФЧХ

26. БИХ - фильтры проектируют следующими методами (укажите несколько):

- а) методом частотной выборки
- б) методом билинейного z-преобразования
- в) методом инвариантного преобразования импульсной характеристики
- г) методом весовых функций окна

27. Проектирование (синтез) цифрового фильтра включает следующие этапы (укажите несколько):

- а) изучение ошибок конечной разрядности
- б) аппроксимация с целью определения коэффициентов фильтра
 - в) выбор схемы фильтра
 - г) моделирование фильтра

28. Методы синтеза цифровых фильтров:

- а) едины для всех типов фильтров
- б) различны для КИХ-фильтров и БИХ-фильтров
- в) различны для трансверсальных и нерекурсивных фильтров
- г) различны для устойчивых и неустойчивых фильтров

29. Если число отсчетов входного сигнала N- четное число, то постоянная фазовая задержка равна:

- а) четному числу
- б) нечетному числу
- в целому числу
- г) дробному числу

30. Идея проектирования цифровых фильтров методом окон заключается:

- а) в выборе частотной характеристики специального вида
- б) в выборе специальной весовой функции, уменьшающей пульсации в полосе пропускания частотной характеристики
- в) в выборе системной функции, ограничивающей полосу пропускания фильтра
 - г) в выборе специфической импульсной характеристики фильтра

31. В качестве весовых функций в методе проектирования фильтров с помощью окон используют (укажите несколько):

- а) окна Фурье
- б) окна Кайзера
- в) окна Чебышева
- г) окна Коши

32. БИХ-фильтры имеют следующие преимущества по сравнению с КИХ- фильтрами (укажите несколько):

- а) имеют строго линейную ФЧХ
- б) не требуют проверки на устойчивость
- в) могут аппроксимировать заданные аналоговые фильтры
- г) работают на значительно более высоких частотах дискретизации

33. Метод инвариантного преобразования импульсной характеристики основан на знании:

- а) импульсной характеристики цифрового фильтра
- б) системной функции цифрового фильтра
- в) передаточной функции аналогового фильтра-прототипа
- г) частотной характеристики цифрового фильтра

34. Идея второго варианта метода инвариантного преобразования импульсной характеристики заключается:

- а) в использовании конформного билинейного преобразования
- б) в представлении аналогового фильтра-прототипа в виде нескольких однополюсных фильтров
- в) в представлении аналогового фильтра-прототипа в виде нескольких двухполюсных фильтров
 - г) в аппроксимации частотной характеристики аналогового прототипа

35. Методы синтеза цифровых фильтров классифицируют по следующим признакам (укажите несколько):

- а) по выбранной схеме построения фильтра
- б) по типу импульсной характеристики
- в) по наличию аналогового прототипа
- г) по способам оценки эффектов квантования

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Дискретизация сигнал – это процесс:

- а) преобразования аналогового сигнала x(t)в сигнал xi(t)
- б) преобразования аналогового сигнала x(t)в сигнал x(ti)

- в) преобразования аналогового сигнала x(t)в сигнал xk(t)
- г) преобразования аналогового сигнала в цифровой сигнал
- 2. Квантование по уровню это процесс:
- а) преобразования сигнала x(t)в дискретный сигнал x(ti)
- б) восстановления исходного сигнала по дискретным значениям
- в) применения принципа интерполяции в задачах дискретизации сигналов
 - Γ) преобразования сигнала x(t)в дискретную шкалу значений xk(t)

3. Воспроизводящая функция определяется:

- а) совокупностью отсчетов исходного сигнала
- б) системой базисных функций
- в) верно а) и б)
- г) значениями измеряемой величины

4. К критериям оценки точности дискретизации относят (выберите несколько):

- а) среднеквадратичный критерий
- б) интерполяционный критерий
- в) адаптивный критерий
- г) вероятностный критерий

5. Интерполяционные методы восстановления сигнала требуют:

- а) обеспечения большей избыточности отсчетов по сравнению с экстраполяционными
- б) предсказания поведения измеряемого сигнала на интервале интерполяции
 - в) задержки измеряемого сигнала на интервал интерполяции
 - г) верно
 - б) и в).

6. К неравномерной дискретизации относят:

- а) программируемые методы дискретизации
- б) программируемые методы дискретизации с кратными интервалами
- в) методы адаптивной дискретизации
- г) все вышеперечисленные методы

7. При равномерной дискретизации по Котельникову оценка точности дискретизации осуществляется по:

- а) вероятностному критерию
- б) среднеквадратичному критерию
- в) максимальному критерию
- г) адаптивному критерию

8. Представление функции рядом Котельникова требует:

- а) непрерывности функции
- б) абсолютной интегрируемости функции
- в) ограниченности спектра функции
- г) периодичности функции

9. Функция отсчетов $\square k$ (t) с номером k имеет следующие свойства (укажите несколько):

- а) достигает своего наибольшего значения в момент времени $t \, 2k \, 2c$
 - б) симметрична относительно момента времени $t \, \mathbb{R}^{d} \, \mathbb{R}^{d}$
 - в) ортогональна на бесконечно большом интервале времени
 - г) имеет ограниченный амплитудный спектр

10. Для определения граничной частоты амплитудного спектра реальных сигна-

лов чаще всего используют:

- а) временной критерий
- б) энергетический критерий
- в) амплитудный критерий
- г) минимаксный критерий

11 Погрешность дискретизации реальных сигналов по Котельникову обусловлена следующими причинами (выберите несколько):

- а) конечным числом отсчетов реального сигнала
- б) искусственной ограниченностью спектра реальных сигналов
- в) пренебрежением вклада неограниченного числа функций отсчетов за пределами временного интервала измерения
 - г) верно все вышеперечисленное

12. Метод точечной интерполяции в задачах дискретизации предполагает использование (выберите несколько):

- а) полиномов Лежандра
- б) полиномов Лагранжа
- в) полиномов Чебышев
- г) степенных полиномов

13. Выбор частоты дискретизации в задачах точечной интерполяции требует использования следующего критерия:

- а) максимального отклонения
- б) среднеквадратичного
- в) вероятностного
- г) адаптивного

14. Ступенчатая аппроксимация в задачах точечной интерполяции осуществляется:

- а) степенным многочленом первой степени
- б) степенным многочленом нулевой степени
- в) степенным многочленом n ой степени
- г) функцией отсчетов

15. При восстановлении дискретизируемой функции полиномами нулевой степени погрешность восстановления принимает максимальное значение:

- а) в конце интервала дискретизации
- б) в середине интервала дискретизации
- в) на участке максимальной производной этой функции

г) на участке минимального значения производной этой функции

16. Использование линейной аппроксимации по сравнению с квадратичной обеспечивает:

- а) уменьшение погрешности восстановления
- б) уменьшение значения остаточного члена
- в) увеличение частоты дискретизации
- г) увеличение погрешности восстановления

17. При выборе уровня квантования в середине интервала квантования среднее значение погрешности равно:

- а) половине интервала квантования
- б) нулю
- в) интервалу квантования
- г) 0,25 от интервала квантования

18. При квантовании сигналов при наличии помех условная вероятность правильного решения зависит:

- а) от способа соотнесения уровня квантования с шириной интервала квантования
 - б) от отношения «сигнал/шум»
 - в) от закона распределения помехи
 - г) от отношения амплитуды помехи к ширине интервала квантования

19. Функции Радемахера не обладают следующим свойством (укажите лишнее):

- а) полнота системы функций
- б) ортогональность системы функций
- в) ортонормированность системы функций
- г) знакопеременность системы

20. Функции Уолша могут быть

упорядочены: а) по Пэли

- б) по Хармуту
- в) по Адамару
- г) всеми тремя способами упорядочения

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Принцип упорядочения функций Уолша по Хармуту заключается:

- а) по номеру позиции двоичного представления числа, содержащего единицу
 - б) по числу смены знаков функции
 - в) в двоичной инверсии номеров функций Пэли
 - г) по адаптивному критерию

2. Среднее значение всех функций Уолша (за исключением одной) равно: а) единице

- б) нулю
- в) модулю функции Уолша
- г) средние значения функций Уолша различны

3. Спектр Уолша – это:

- а) норма функций Уолша
- б) коэффициенты разложения в ряд Фурье
- в) коэффициенты разложения в ряд Уолша
- г) последовательность номеров функций Уолша
- 4. Дискретный (цифровой)

фильтр - это:

- а) соответствующая компьютерная программа
- б) цифровой сигнальный процессор
- в) специализированная БИС
- г) все вышеперечисленное

5. Системы цифровой обработки сигналов должны обладать свойствами: а) линейности

- б) устойчивости
- в) физической реализуемости
- г) всеми вышеперечисленными свойствами

6. Рекурсивный фильтр является:

- а) устойчивой системой
- б) физически реализуемой системой
- в) системой с обратной связью
- г) трансверсальной системой

7. Цифровой фильтр не содержит в своей структуре следующего элемента (укажите лишнее):

- а) сумматор
- б) интегратор
- в) умножитель
- г) элемент единичной задержки

8. Цифровой единичный импульс в цифровой системе – это аналог: а) единичной функции в аналоговой системе

- б) функции Хэвисайда в аналоговой системе
- в) дельта-функции Дирака в аналоговой системе
- г) ступенчатой функции в аналоговой системе

9. Комплексная дискретная экспонента обладает свойствами: а) уменьшения амплитуды функции

- б) модуль функции равен единице
- в) фаза функции нарастает по линейному закону
- г) верно б) и в)

10. Импульсной характеристикой цифрового фильтра является: а) его реакция на единичный скачок

- б) его реакция на единичныимпульс
- в) его реакция на дельта-функцию
- г) его реакция на комплексную экспоненту

11. КИХ-фильтр характеризуется свойствами (укажите несколько):

а) имеет бесконечное число отсчетов импульсной характеристики

- б) имеет конечное число отсчетов импульсной характеристики
- в) является синонимом рекурсивного фильтра
- г) является синонимом нерекурсивного фильтра

12. Z-преобразование преобразует:

- а) дифференциальное уравнение в разностное уравнение дискретной системы
- б) разностное уравнение дискретной системы в дифференциальное
- в) алгебраическое уравнение в разностное уравнение дискретной системы
 - г) разностное уравнение дискретной системы в алгебраическое

13. Системная (передаточная) функция цифрового фильтра связана с его импульсной характеристикой:

- а) прямым преобразованием Фурье
- б) обратным преобразованием Фурье в) прямым Z-преобразованием
- г) билинейным Z-преобразованием

14. При использовании одностороннего Z-преобразования необходимо учитывать: а) набор граничных условий

- б) набор начальных условий
- в) набор начальных и граничных условий
- г) набор разностных уравнений

15. Обратное Z-преобразование можно вычислить следующими методами (укажите несколько):

- а) используя теорему о вычетах
- б) методом контурного интегрирования
- в) методом разложения на простые дроби
- г) методом деления числителя на знаменатель

7.2.4 Примерный перечень вопросов для подготовки к зачету (не предусмотрено учебным планом)

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Изобразить структурную схему СЧ с ИФАПЧ и объяснить, зачем эта система часто комбинируется с ИЧАП.
- 2. Нарисовать структурные схемы автоматической аналоговой электронной настройки РПУ.
- 3. Изобразить структурную схему автоматической цифровой электронной настройки РПУ.
 - 4. Назначение и виды индикаторов РПУ
 - 5. Функции, выполняемые МП в РПУ.
 - 6. Пояснить работу СЧ с микропроцессорным управлением.
 - 7. Особенности работы МП в системе дистанционного управления.
- 8. Особенности построения и назначения блоков структурных схем дистанционного управления РПУ.
 - 9. Принцип работы и структурные схемы цифровых индикаторов ча-

стоты.

- 10. Электронные ключи ТТЛ.
- 11. Электронные ключи КМДП.
- 12. Базовые логические элементы ТТЛ.
- 13. Базовые логические элементы КМДП.
- 14. Классификация запоминающих устройств.
- 15. Основные параметры запоминающих устройств.
- 16. Структура запоминающих устройств со словарной организацией, их особенности.
- 17. Структура запоминающих устройств с матричной организацией, их особенности.
- 18. Построение многоразрядных запоминающих устройств с матричной организацией.
- 19. Структура запоминающих устройств с комбинированной выборкой, их функционирование.
- 20. Элементы памяти оперативных запоминающих устройств статического типа, их функционирование.
 - 22. Постоянные запоминающие устройства. Классификация.
 - 23. Виды постоянных запоминающих устройств.
 - 24. ПЗУ матричного типа. Схема матрицы. Топология матрицы.
 - 25. Однократно программируемое ПЗУ с пережигаемыми перемычками.
- 26. Репрограммируемое ПЗУ на лавинно-инжекционных транзисторах с плавающим затвором.
 - 27. Схема запоминающего элемента на ЛИПЗ МОП-транзисторах.
- 28. Репрограммируемое ПЗУ с электрической записью и стиранием информации.
 - 29. Программируемые логические матрицы. Структура.
 - 30. Схемотехника программируемых логических матриц.
 - 31. Программируемая матричная логика.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -15.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 5 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 5 до 8 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 9 до 12 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 13 до 15 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (те-	Код контролиру-	Наименование оценочного
	мы) дисциплины	емой компетенции	средства
1	Аппаратные средства цифровой	ПК-2, ПК-4	Тест, защита лабораторных
	обработки сигналов		работ, требования к курсо-
			вому проекту
2	Дискретизация и восстановление	ПК-2, ПК-4	Тест, защита лабораторных
	сигналов		работ, требования к курсо-
			вому проекту
3	Преобразование дискретных сиг-	ПК-2, ПК-4	Тест, защита лабораторных
	налов		работ, требования к курсо-
			вому проекту
4	Структурные схемы построения	ПК-2, ПК-4	Тест, защита лабораторных
	сигнальных процессоров. Обзор		работ, требования к курсо-
	системы команд сигнальных		вому проекту
	процессоров.		

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Микушин, А.В. Цифровая схемотехника [Электронный ресурс] : монография / В.И. Сединин; А.В. Микушин. Новосибирск : Сибирский государственный университет телекоммуникаций и информатики, 2016. 319 с.
- ISBN 978-5-91434-036-7. URL: http://www.iprbookshop.ru/69569.html
- 2. Проектирование цифровых устройств обработки сигналов: методиче-

ские указания к выполнению курсового проекта по дисциплине «Проектирование цифровых устройств обработки сигналов» для студентов направления 11.03.03 «Конструирование и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: Н. В. Ципина. Воронеж: Изд-во ВГТУ, 2018. – 17 с.

- 3. Проектирование цифровых устройств обработки сигналов: методические указания к выполнению лабораторных работ по дисциплине «Проектирование цифровых устройств обработки сигналов» для студентов направления 11.03.03 «Конструирование и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: Н. В. Ципина. Воронеж: Изд-во ВГТУ, 2018. 17 с.
- 4. Проектирование цифровых устройств обработки сигналов: методические указания к выполнению практических работ по дисциплине «Проектирование цифровых устройств обработки сигналов» для студентов направления 11.03.03 «Конструирование и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения / ФГБОУ ВО «Воро- нежский государственный технический университет»; сост.: Н. В. Ципина. Воронеж: Изд-во ВГТУ, 2018. 17 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень ПО, включая перечень лицензионного программного обеспечения:

OC Windows 7 Pro;

Google Chrome;

Microsoft Office 64-bit

Компас 3D;

Altium Designer;

Ресурсы информационно-телекоммуникационной сети «Интернет»:

<u>http://window.edu.ru</u> – единое окно доступа к информационным ресурсам;

<u>http://www.edu.ru/</u> – федеральный портал «Российское образование»; Образовательный портал ВГТУ;

<u>http://www.iprbookshop.ru/</u> – электронная библиотечная система IPRbooks;

www.elibrary.ru – научная электронная библиотека

Профессиональные базы данных, информационные справочные си-

стемы:

https://docplan.ru/ – бесплатная база ГОСТ

<u>http://www.kit-e.ru/</u> — электронная версия журнала «Компоненты и технологии»

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная аудитория, укомплектованная следующим оборудованием:

- персональный компьютер с установленным ПО, подключенный к сети Интернет;
 - доска магнитно-маркерная;
 - мультимедийный проектор на кронштейне;
 - экран настенный

Учебная аудитория (компьютерный класс), укомплектованная следующим оборудованием:

- персональные компьютеры с установленным ПО, подключенные к сети Интернет 11 шт.;
 - принтер цветной лазерный;
 - 3D принтер «Альфа-2»;
 - доска магнитно-маркерная поворотная;
 - цифровой осциллограф DS1052E 3 шт.;
 - анализатор спектра DSA815;
 - генератор VC2002;
 - источник питания DP832 4 шт.;
 - источник питания НУ 1503D 2 LCD − 6 шт.;
 - − мультиметр DM3058E − 3 шт.

Помещение (Читальный зал) для самостоятельной работы с выходом в сеть «Интернет» и доступом в электронно-библиотечные системы и электронно-информационную среду, укомплектованное следующим оборудованием:

- персональные компьютеры с установленным ПО, подключенные к сети Интернет 10 шт.;
 - принтер;
 - магнитно-маркерная доска;
 - переносные колонки;
 - переносной микрофон.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По дисциплине «Проектирование цифровых устройств обработки сигналов» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излага-

ются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе. Лекции представляет собой систематическое, последовательное изложение учебного материала. Это — одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать автоматически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения

- Практические занятия позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических занятий для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.

Лабораторные работы важны тем, что деятельность студентов приближается к деятельности инженера, способствуя приобретению навыков исследовательской работы, освоению методики экспериментальной работы, ознакомлению с радиоэлектронным оборудованием, обучению правилам безопасной работы с оборудованием

Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:

- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
- выполнение домашних заданий и типовых расчетов;
- работа над темами для самостоятельного изучения;
- участие в работе студенческих научных конференций, олимпиадах;
- подготовка к зачетам и экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Рекомендуется составлять их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- текущий (опрос, тестирование, расчеты, защита ЛР);
- промежуточный (КР, экзамен).

Экзамен — форма итоговой проверки знаний студентов. Для успешной сдачи экзамена необходимо заниматься систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения.

Методика выполнения курсового проекта изложена в учебно-методическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой

курсового проекта, защитой курсового проекта.

	, защитои курсового проекта. Г		
Вид учебных за-	Деятельность студента		
нятий			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно		
	фиксировать основные положения, выводы, формулировки, обоб-		
	щения; помечать важные мысли, выделять ключевые слова, терми-		
	ны. Проверка терминов, понятий с помощью энциклопедий, слова-		
	рей, справочников с выписыванием толкований в тетрадь. Обозна-		
	чение вопросов, терминов, материала, которые вызывают трудности,		
	поиск ответов в рекомендуемой литературе. Если самостоятельно не		
	удается разобраться в материале, необходимо сформулировать во-		
	прос и задать преподавателю на лекции или на практическом заня-		
	тии.		
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом		
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр ре-		
	комендуемой литературы. Прослушивание аудио- и видеозаписей по		
	заданной теме, выполнение расчетно-графических заданий, решение		
	задач по алгоритму.		
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретиче-		
	ские знания, полученные на лекции при решении конкретных задач.		
	Чтобы наиболее рационально и полно использовать все возможности		
	лабораторных для подготовки к ним необходимо: следует разобрать		
	лекцию по соответствующей теме, ознакомится с соответствующим		
	разделом учебника, проработать дополнительную литературу и ис-		
~	точники, решить задачи и выполнить другие письменные задания.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвое-		
работа	нию учебного материала и развитию навыков самообразования.		
	Самостоятельная работа предполагает следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
П	- подготовка к промежуточной аттестации.		
Подготовка к про-	Готовиться к промежуточной аттестации следует систематически, в		
межуточной атте-	течение всего семестра. Интенсивная подготовка должна начаться не		
стации	позднее, чем за месяц-полтора до промежуточной аттестации. Дан-		
	ные перед экзаменом три дня эффективнее всего использовать для		
	повторения и систематизации материала.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата вне- сения из- менений	Подпись заведую- щего кафедрой, от- ветственной за реа- лизацию ОПОП
1			
2			
3			