МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный технический университет» в городе Борисоглебске

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Расчет стальных строительных конструкций большепролетных и высотных зданий и сооружений»

Направление подготовки08.03.01 «Строительство»	
Профиль <u>«Промышленное и гражданское строитель</u>	CTBO»
Квалификация выпускника _Бакалавр	
Нормативный период обучения4 года	
Форма обучения Очная	
Год начала подготовки 2021 г.	
Автор программы	А.Г. Янин
Заведующий кафедрой промышленного и гражданского строительства	_ М.В. Новиков
Руководитель ОПОП	М.В. Новиков

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Курс «Расчет стальных строительных конструкций большепролетных и высотных зданий и сооружений» имеет своей **целью** изучение студентами новейших достижений в области проектирования высотных и большепролетных зданий и сооружений из строительной стали, использование полученных знаний в профессиональной деятельности.

1.2. Задачи освоения дисциплины

- выполнение работ по сбору и систематизации нормативных и метрических данных для проектирования зданий и сооружений;
- выполнение расчетных обоснований для оценки напряженнодеформированного состояния элементов строительных конструкций проектируемых зданий и сооружений с использованием универсальных программно-вычислительных комплексов, а также систем автоматизированного проектирования;
- -конструирование элементов строительных конструкций из прокатных профилей, узлов их соединений между собой и с опорами;
- подготовка проектной и рабочей технической документации в области проектирования строительных конструкций, оформление проектно-конструкторских работ.

Приобретенные знания способствуют формированию инженерного мышления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Сопротивление материалов с основами теории упругости» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Расчет стальных строительных конструкций большепролетных и высотных зданий и сооружений» направлен на формирование следующих компетенций:

- ПК-4 Способен анализировать качество выполнения лабораторных испытаний, специальных прикладных исследований при проектировании объектов промышленного и гражданского назначения;
- ПК-5 Способен выполнять работы по организационнотехнологическому проектированию объектов промышленного и гражданского назначения.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-4	Знать классификацию высотных зданий и сооружений, их конст-

	руктивные решения, основные особенности их напряженнодеформированного состояния.						
	Уметь применять справочную и нормативную документацию к объекту проектирования для выполнения расчетов строительных конструкций, анализировать результаты расчетов						
	Владеть навыками разработки расчетных схем и анализа напряженно-деформированного состояния высотных и большепролетных зданий и сооружений.						
ПК-5	знать требования нормативных технических документов для выполнения расчетов и чертежей строительных конструкций объектов промышленного и промышленное и гражданское строительство 08.03.01 Строительство 75 гражданского назначения, знать профессиональную строительную терминологию.						
	Уметь моделировать расчетные схемы, выполнять расчеты и составлять спецификации на строительные конструкции объектов промышленного и гражданского назначения. Владеть навыками расчетов и выполнения чертежей строительных конструкций.						

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Расчет стальных строительных конструкций большепролетных и высотных зданий и сооружений» составляет 7 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего	Сем	естры
Виды учеоной расоты	часов	7	8
Аудиторные занятия (всего)	114	54	60
В том числе:			
Лекции	56	36	20
Практические занятия	58	18	40
Самостоятельная работа	111	72	39
Курсовой проект	+		+
Часы на контроль	27		27
Виды промежуточной аттестации - экзамен	+	+	+
Общая трудоемкость:			
академические часы	252	126	126
зач.ед.	7	3,5	3,5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

_			o man dopina ooy temin				
	№ п/п	Наименование темы	Содержание раздела	Лекции	Прак. зан.	CPC	Все- го, час
		7 семестр					

	Плоскостные кон- струкции большого пролета: балки, ра- мы и арки.	Области применения и особенности работы балок и рам большого пролета. Предварительное напряжение в стальных конструкциях. Канаты, используемые для предварительнонапряжения, а также для сооружений мачтового типа, висячих и вантовых конструкций. Механические характеристики стальных канатов. Обеспечение пространственной жесткости покрытий из плоскостных конструкций. Системы связей. Расчет предварительно-напряженных стержней, балок, ферм и др. Основы расчета покрытий с предварительно-напряженной тонколистовой общивкой. Особенности работы арок. Классификация арок. Геометрический расчет арок. Компоновка арочных покрытий. Определение усилий в элементах арок. Конструирование и расчет опорных узлов арок.	12	6	24	42
2	странственные и перекрестно- балочные системы. Своды и купола.	Многообразие структурных плит покрытия в виде пространственных стержневых систем. Способы их опирания на несущие стойки и особенности расчета. Перекрестныестержневые системы из стальных балок сплошного и сквозного сечений. Их компоновка и расчет. Формообразование и классификация сводов. Основы расчета покрытий в виде свода. Несущие элементы купольных покрытий. Классификация куполов, соединения элементов куполов. Расчет ребристых и ребристо-кольцевых куполов. Основы расчета сетчатых куполов	12	6	24	42
3	Висячие и вантовые конструкции. Комбинированные конструкции.	Классификация висячих и вантовых конструкций покрытий. Несущие элементы: гибкая нить, ванта, канат, жесткая нить. Способы уменьшения деформаций висячих и вантовых систем. Основы расчета гибких нитей: без учета и с учетом их деформаций. Особенности проектирования одно- и двухпоясных висячих систем. Конструкции и особенности расчета вантовых ферм. Основы проектирования и расчета висячих и вантовых комбинированных конструкций. Функции влияния Н. М. Кирсанова. Расчет. Основы расчета сетчатых покрытий	12	6	24	42
		Итого за 7 семестр	36	18	72	126
	8 семестр					
4	Мембранные и тентовые покрытия. Пневматические конструкции	Классификация мембранных конструкций. Материалы, применяемые для мембран и тентов. Основные расчетные схемы. Понятия о конструктивной нелинейности тонкостенных мембранных покрытий.	5	10	12	27
5	Каркасы много- этажных и высот- ных зданий	Основные типы конструктивных схем стальных каркасов многоэтажных зданий. Нагрузки на многоэтажные здания. Определение усилий в элементах рамного и связевого каркаса многоэтажного здания. Расчет элементов каркаса и узлов их соединений. Проектирование опорных узлов.	5	10	12	27
6	Сооружения ба- шенного и мачто-	Материалы для сооружений башенного и мачтового типа, особенности действующих	10	20	15	45

вого типа	нагрузок. Основные виды и классификация конструктивных схем металлических башен. Проектирование опорных узлов башен Мачтовые сооружения. Основные виды вантовых поддерживающих конструкций. Проектирование анкерных креплений растяжек мачт.				
	Контроль				27
	Итого за 8 семестр	20	40	39	126
	Итого	56	58	111	252

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 8 семестре для студентов очной формы обучения.

Примерная тематика курсового проекта:

«Проектирование большепролетного покрытия с использованием плоскостной конструкции».

Задачи, решаемые при выполнении курсового проекта:

- разработка компоновочной пространственной системы покрытия, определение системы связей;
 - сбор нагрузок на несущие элементы кровли и покрытия;
- выполнение расчетной схемы покрытия и определение внутренних усилий в её элементах;
- подбор поперечных сечений несущих элементов кровли и несущих элементов покрытия, подбор сечений фахверка и связей;
 - конструирование опорных узлов конструкции покрытия.

Курсовой проект должен содержать графическую часть и расчетнопояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характери- зующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован	
ПК-4	Знать классификацию высот-	Посещение лекций.	Успешное тестиро-	Количество пра-	
	ных зданий и сооружений, их	Активная работа на	вание (более 70%	вильных ответов	
	ных здании и сооружении, их	практических заня-	верных ответов).	тестовых заданий	

	конструктивные решения, основные особенности их напряженно-деформированного состояния.	тиях, тестирование		менее 70%.
	Уметь применять справочную и нормативную документацию к объекту проектирования для выполнения расчетов строительных конструкций, анализировать результаты расчетов		Выполнение работ в срок, предусмотренный рабочей программой	в срок, предусмот-
	Владеть навыками разработки расчетных схем и анализа напряженно-деформированного состояния высотных и большепролетных зданий и сооружений.	ных задач, тестиро- вание	Выполнение работ в срок. предусмотренный рабочей программой	в срок, предусмотренный рабочей программой (РП).
ПК-5	знать требования нормативных технических документов для выполнения расчетов и чертежей строительных конструкций объектов промышленного и промышленное и гражданское строительство 08.03.01 Строительство 75 гражданского назначения, знать профессиональную строительную терминологию.	Активная работа на практических занятических тиях, тестирование	верных ответов).	вильных ответов тестовых заданий менее 70%.
	Уметь моделировать расчетные схемы, выполнять расчеты и составлять спецификации на строительные конструкции объектов промышленного и гражданского назначения.		Выполнение работ в срок, предусмотренный рабочей программой	в срок, предусмот-
	Владеть навыками расчетов и выполнения чертежей строительных конструкций.		Выполнение работ в срок. предусмотрен- ный рабочей про- граммой	в срок, предусмот-

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 7 семестре по двухбалльной системе:

«зачтено»;

«не зачтено».

Компе - тенци я	Результаты обучения, характери- зующие сформированность компе- тенции	Критерии оценивания	Зачтено	Не зачтеноан		
ПК-4	Знать классификацию высотных зданий и сооружений, их конструктивные решения, ос-	•	· r			

	новные особенности их напряженно-деформированного состояния. Уметь применять справочную и нормативную документацию к объекту проектирования для выполнения расчетов строительных конструкций, анализировать результаты расчетов	дартных задач.	Продемонстррован верный ход решения в большинстве задач	
	Владеть навыками разработки расчетных схем и анализа напряженно-деформированного состояния высотных и большепролетных зданий и сооружений.		Продемонстррован верный ход решения в большинстве задач	Задачи не решены
ПК-5	знать требования нормативных технических документов для выполнения расчетов и чертежей строительных конструкций объектов промышленного и промышленное и гражданское строительство 08.03.01 Строительство 75 гражданского назначения, знать профессиональную строительную терминологию.	Тестирование	Успешное тестирование (более 70% верных ответов).	
	Уметь моделировать расчетные схемы, выполнять расчеты и составлять спецификации на строительные конструкции объектов промышленного и гражданского назначения.	Решение стан- дартных задач.	Продемонстррован верный ход решения в большинстве задач	Задачи не решены
	Владеть навыками расчетов и выполнения чертежей строительных конструкций.		Продемонстррован верный ход решения в большинстве задач	Задачи не реше- ны

Результаты промежуточного контроля знаний оцениваются в 8 семестре по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-4	Знать классифика- цию высотных зданий и сооруже- ний, их конструк- тивные решения, основные особен-	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

	ности их напряженно- деформированного состояния.	Решение стан-	Глубокое зна-	Достаточные	Достаточные	Недоста-
	Уметь применять справочную и нормативную до-кументацию к объекту проектирования для выполнения расчетов строительных конструкций, анализировать результаты расчетов	дартных задач курса	ние теории, успешное ре- шение задач	знания теории, владение на- выками реше- ния задач	знания теории, но допущены ошибки при решении задач	точные зна- ния теории, задачи не решены
	Владеть навыками разработки расчетных схем и анализа напряженнодеформированного состояния высотных и большепролетных зданий и сооружений.	Решение при- кладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст- рирован вер- ный ход реше- ния, но допу- щены некото- рые ошибки	Продемонст- рирован вер- ный ход реше- ния в боль- шинстве задач	Задачи не решены
ПК-5	знать требования нормативных технических документов для выполнения расчетов и чертежей строительных конструкций объектов промышленного и промышленное и гражданское строительство 75 гражданского назначения, знать профессиональную строительную терминологию.	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь моделировать расчетные схемы, выполнять расчеты и составлять спецификации на строительные конструкции объектов промышленного и гражданско-	Решение стандартных задач курса	Глубокое знание теории, успешное решение задач	Достаточные знания теории, владение навыками решения задач	Достаточные знания теории, но допущены ошибки при решении задач	Недоста- точные зна- ния теории, задачи не решены

го назначения.					
Владеть навыками	Решение при-	Задачи решены	Продемонст-	Продемонст-	Задачи не
nacuetor и выпол-	кладных задач в конкретной	в полном объ- еме и получе-	рирован вер- ный ход реше-	рирован вер- ный ход реше-	решены
нения чертежей	предметной	ны верные	ния, но допу-	ния в боль-	
строительных кон-	области	ответы	щены некото-	шинстве задач	
струкций.			рые ошибки		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какие конструкции называются балочными?
- конструкции, изготовленные из элементов сплошного поперечного сечения;
 - конструкции, имеющие шарнирные опорные закрепления;
 - конструкции, изготовленные из прямолинейных элементов;
 - конструкции, имеющие только вертикальные опорные реакции.
 - 2. Какая конструкция называется аркой?
 - криволинейный жесткий стержень;
 - криволинейный жесткий стержень параболического очертания;
 - криволинейный жесткий стержень, установленный выпуклостью вверх;
 - криволинейный жесткий стержень, в котором возникает распор.
 - 3. Что такое блочная компоновка арок?
 - арка состоит из блоков;
 - арочное покрытие состоит из арок, расположенных с некоторым шагом;
- арочное покрытие состоит из арок, расположенных с некоторым шагом и на торцах имеются пространственные блоки;
 - арочное покрытие состоит из арок, объединенных в блок.
 - 4. Что такое рядовая компоновка арок?
 - арка состоит из блоков;
 - арочное покрытие состоит из арок, расположенных с некоторым шагом;
- арочное покрытие состоит из арок, расположенных с некоторым шагом и на торцах имеются пространственные блоки;
 - арочное покрытие состоит из отдельных арок, объединенных в блок.
 - 5. Что принимается за геометрическую длину арки?
 - пролет арки расстояние между опорами;
 - длина геометрической оси арки между опорами;
 - полудлина геометрической оси арки между опорами;
- длина геометрической оси арки между опорами, умноженная на коэффициент расчетной длины.
 - 6. От чего зависит коэффициент расчетной длины арки?

- от типа опорных закреплений;
- от типа расчетной схемы арки;
- от стрелы подъема арки;
- от типа расчетной схемы арки и от стрелы подъема арки.
- 7. Перекрестно-стержневые системы это конструкции, образованные:
- пересечением поперечных ферм с продольными конструкциями;
- пересечением поперечных стержней с продольными стержнями;
- пересечением поперечных конструкций с продольными конструкциями;
- пересечением плоских ферм в двух, трех и более направлений.
- 8. Какие конструкции называются структурными?
- их топология образуется из перекрестных стержней;
- их топология образуется из пространственно расположенных стержней;
- их топология образуется из пространственно расположенных стержней, которые в свою очередь образуют ребра пирамиды;
- их топология образуется из пространственно расположенных стержней и можно выделить многократно повторяющийся пространственный элемент
 - 9. В структурной конструкции:
 - все элементы поясов имеют одинаковую длину;
 - все элементы решетки имеют одинаковую длину;
 - все элементы покрытия имеют одинаковую длину;
- элементы поясов имеют одинаковую длину, длина элементов решетки определяется заданной геометрией поясов.
 - 10. Какая конструкция называется куполом?
 - криволинейная оболочка;
 - криволинейная оболочка вращения относительно вертикальной оси;
 - криволинейная оболочка, имеющая нижний опорный контур;
 - криволинейная оболочка, имеющая нижний и верхний опорный контур.
 - 11. В расчетной схеме арки нижний опорный контур представляется как:
 - опорное закрепление жесткого типа;
 - опорное закрепление шарнирного типа;
 - условная затяжка;
 - условная упругоподатливая опора.
 - 12. Кольцевая конструкция в куполе:
 - испытывает сжатие;
 - испытывает растяжение;
 - испытывает изгиб;
 - испытывает сжатие с изгибом.
 - 13. Ребро в куполе:
 - испытывает сжатие;
 - испытывает растяжение;
 - испытывает изгиб;

- испытывает сжатие с изгибом.
- 14. Висячими называются конструкции, несущими элементами которых...
- являются стальные тросы;
- гибкие нити;
- несущие элементы работают на растяжение;
- являются криволинейные или прямолинейные гибкие стержни.

15. Какой элемент называется гибкой нитью?

- элемент, изготовленный из стального троса;
- элемент, в котором практически отсутствует изгибная жесткость;
- элемент, работающий только на растяжение;
- криволинейный элемент, изготовленный из стального троса.

16. Какая нить считается пологой?

- имеющая параболическое очертание;
- имеющая относительную стрелу провеса $f/l \le 1/6$;
- имеющая относительную стрелу провеса $f/l \le 1/20$;
- у которой осевое усилие считается равномерным по всей длине нити.

17. Проволока фасонного сечения предназначена для:

- повышения несущей способности каната;
- повышения коррозионной защиты каната;
- создания определенного поперечного сечения каната;
- использования высокопрочных материалов в канатах.

18. Что такое маркировочная группа каната?

- обозначение типа каната;
- обозначение вида используемой проволоки в канате;
- обозначение прочностных свойств используемой проволоки в канате;
- обозначение области применения каната.

19. Что такое закрытый несущий канат?

- канат со специальным защитным покрытием;
- спиральный канат со специальным защитным покрытием;
- крученый канат, имеющий в одном или нескольких внешних слоях специальную фасонную проволоку;
- крученый канат со специальным защитным покрытием и точечным касанием проволочек.

20. Способы стабилизации одно-поясных висячих конструкций:

- регулировки стрелы провеса несущей нити;
- использования дополнительного груза (увеличения постоянной нагрузки);
- использования предварительного напряжения;
- использования равновесной схемы нагружения конструкции.

21. Чем вызвана повышенная подвижность висячих конструкций?

- использованием высокопрочных материалов;

- неравновесной формой перемещений;
- кинематическими перемещениями и упругими удлинениями;
- гибкостью несущего элемента;
- отсутствием изгибной жесткости элементов.
- 22. Кинематические перемещения гибкой нити рассчитываются:
- по равновесной схеме нагружения;
- по неравновесной схеме нагружения;
- на действие распределённой временной нагрузки расположенной на половине пролета;
 - на действие временной нагрузки моделируемой сосредоточенной силой.
 - 23. Какие нити относятся к жесткими (изгибно-жесткими)?
 - нити, обладающие изгибной жесткостью;
 - нити, в которых кроме растягивающих возникают напряжения изгиба;
- нити, в которых напряжения изгиба составляют не менее 5% растягивающих напряжений;
 - нити, изготовленные из сплошно-стенных элементов.
- 24. Какие напряжения от постоянной и временной нагрузки возникают в жестких нитях первого типа (изготовленные из прямолинейных элементов)?
 - напряжения растяжения и изгиба;
- от постоянной нагрузки возникают напряжения растяжения, от временной нагрузки растяжения и изгиба;
 - от постоянной и временной нагрузки возникают напряжения растяжения;
- от постоянной нагрузки возникают напряжения изгиба, от временной нагрузки напряжения растяжения и изгиба.
- 25. Какие напряжения от постоянной и временной нагрузки возникают в жестких нитях второго типа (провисающего типа)?
- от постоянной и от временной нагрузки возникают напряжения растяжения и изгиба;
- от постоянной нагрузки возникают напряжения растяжения, от временной нагрузки растяжения и изгиба;
 - от постоянной и временной нагрузки возникают напряжения растяжения;
- от постоянной нагрузки возникают напряжения изгиба, от временной нагрузки напряжения растяжения и изгиба.
 - 26. Какой пояс в двух-поясных висячих системах называется несущим?
 - расположенный сверху;
 - расположенный снизу;
 - имеющий вогнутую форму;
 - имеющий выпуклую форму.
- 27. Стабилизирующая нить в двух-поясных висячих системах рассчитывается на действие...
 - эксплуатационной нагрузки;
 - эксплуатационной и остаточной контактной нагрузки;

- контактной нагрузки;
- постоянной, временной и остаточной контактной нагрузки.
- 28. Подвески (распорки) в двух- поясной висячей системе с несущим канатом расположенным сверху рассчитываются на:
 - сжатие от контактной нагрузки
 - растяжение от контактной нагрузки
 - сжатие от эксплуатационной и остаточной контактной нагрузки
 - растяжение от эксплуатационной и остаточной контактной нагрузки
 - 29. Наиболее технологична башня с конфигурацией:
 - призматического вида;
 - пирамидального вида;
 - с излом очертания пояса.
 - 30. Расчетная схема ствола мачты
 - сжато-изогнутый стержень;
 - сжато-изогнутый стержень на жестких опорах;
 - сжато-изогнутый стержень на упругих опорах;
 - сжато-изогнутый стержень на нелинейно-упругих опорах.

7.2.2 Примерный перечень заданий стандартного типа

- 1. Модуль упругости спирального каната (с кратностью 7-10 свивки) при расчете на временные нагрузки принимается равным ...
 - $1,5 \cdot 10^5$ M∏a;
 - $-1,2 \cdot 10^5$ ΜΠα;
 - $-1,7 \cdot 10^5$ ΜΠα;
 - 1,4 ·10 5 M∏a.
- 2. Модуль упругости спирального каната (с кратностью 12-14 свивки) при расчете на временные нагрузки принимается равным ...
 - $1,5 \cdot 10^5$ M∏a;
 - 1,2 ·10 5 МПа;
 - 1,7 ·10 5 МПа;
 - 1,4 ·10⁵ MΠa.
- 3. Модуль упругости многопрядного каната (с кратностью свивки канатов и прядей менее 7,5) принимается равным ...
 - 1,5· 10^5 МПа;
 - $-1.2 \cdot 10^5$ ΜΠα;
 - 1,7 ·10⁵ M∏a;
 - 1,4 ·10⁵ M∏a.
- 4. Принять коэффициент надежности элементов, рассчитываемых по временному сопротивлению разрыва, равным ...
 - 1,0;
 - 1,1;
 - -1,2;

- 1,3.
5. Назначить коэффициент надежности стальных канатов по материалу
- 1,0;
- 1,1;
- 1,2;
- 1,3.
6. Коэффициент надежности (ответственности) здания важного народ-
нохозяйственного назначения, эксплуатация которого связана с наличием в
нем большого числа людей, равен
- 0,90;
- 0,95;
- 1,0;
- 1,1.
7. Коэффициент надежности (ответственности) для временного здания
со сроком службы свыше 5 лет равен
- 0,90;
- 0,95;
- 1,0;
- 1,1.
8. Коэффициент условий работы каната, используемого в пространст-
венных висячих и вантовых покрытиях, равен
- 0,90;
- 0,95;
- 1,0;
- 1,1.
9. Коэффициент условий работы каната, используемого в оттяжках,
равен
- 0,90;
- 0,95;
- 1,0;
- 1,1.
10. Коэффициент условия работы для закрытого каната с заливкой
цинковым сплавом в концевом креплении, равен
- 0,90;
- 0,95;
- 1,0;
- 1,1.
11. Материал фундаментного болта для опоры воздушной линии пере-
дач при расчетной температуре $t = -50 \text{C}^{\text{o}}$ рекомендуется принять марки
- Cт3пc2;
- Cт3пc4;
- Ст3сп4;
- 09Γ2C.
12. Расчетное сопротивление растяжению фундаментного болта из
стали марки Ст3пс2 М42 следует принять равным

- -180 H/mm^2 ;
- -190 H/mm^2 :
- -220 H/mm^2
- -230 H/mm^2 .

7.2.3 Примерный перечень заданий для прикладных задач

- 1. Распор в арке параболического очертания при q=6,4 кH/ м; l=72 м; f/l=1/8 равен . . .
 - 460,8 кH;
 - 4147,2 кH;
 - 230,2 кH;
 - 57,6 кН.
- 2. Продольное усилие в трех- шарнирной арке параболического очертания при $\alpha = 30^{\circ}$; $Q_{\rm x}^{\circ} = 25$ кH; H = 40 кH равно ...
 - 47,14 κH;
 - 41,65 кH;
 - 1,65 кH;
 - -22,14 κH.
- 3. Усилие в поясе сквозной арки симметричного поперечного сечения при $M = 30 \text{ кH} \cdot \text{м}$; N = 40 кH; h = 2,4 м составляет ...
 - 36,5 кH;
 - 28,5 κH;
 - 32,5 кH;
 - 35 кH.
- 4. Оценить несущую способность стального каната при следующих исходных данных:
- стальной канат по ГОСТ 3064 диаметром 21 мм, маркировочная группа 1370 H/мm^2 , расчетное усилие растяжению 172,5 kH;
- стальной канат по ГОСТ 7669 диаметром 41 мм, маркировочная группа 1470 H/мм^2 , расчетное усилие растяжению 457.5 kH;
- стальной канат по ГОСТ 7676 диаметром 65 мм, маркировочная группа $1570~{\rm H/mm}^2$, расчетное усилие растяжению $632,5~{\rm kH}$.
- 5. Оценить продольное усилие в гибкой параболической нити в опорном сечении по недеформированной расчетной схеме при q = 7.2 кH/ м; l = 60 м; f / l = 1/8
 - 432 кH;
 - 648 кH;
 - 216 кH:
 - 3240 кН.
- 6. Оценить несущую способность жесткой нити I-го типа при следующих исходных данных:
- l = 60 м; b = 3 м; 3 снеговой район; f /l =1/16; колонный двутавр 20К2 (2 шт.) из стали С345;

- l = 60 м; b = 3 м; 4 снеговой район; f/l = 1/16; колонный двутавр 20К2 (2 шт.) из стали С285;
- l = 72 м; b = 3 м; 3 снеговой район; f/l = 1/16; колонный двутавр 24К2 (2 шт.) из стали С285;
- l = 72 м; b = 3 м; 5 снеговой район; f/l = 1/16; колонный двутавр 24К2 (2 шт.) из стали С345.
- 7. Оценить деформации жесткой нити I-го типа при следующих исходных данных:
- l = 60 м; b = 3 м; 3 снеговой район; f/l = 1/16; колонный двутавр 20К2 (2 шт.) из стали С345;
- l = 60 м; b = 3 м; 4 снеговой район; f/l = 1/16; колонный двутавр 20К2 (2 шт.) из стали С285;
- l = 72 м; b = 3 м; 3 снеговой район; f/l = 1/16; колонный двутавр 24К2 (2 шт.) из стали С285;
- l=72 м; b=3 м; 5 снеговой район; f/l=1/16; колонный двутавр 24К2 (2 шт.) из стали С345.
- 8. Оценить несущую способность жесткой нити II-го типа при следующих исходных данных:
- l=72 м; b=3 м; 3 снеговой район; f/l=1/12; колонный двутавр 30К4 из стали С285;
- l = 72 м; b = 3 м; 4 снеговой район; f/l = 1/14; колонный двутавр 30К3из стали С285;
- l=81 м; b=3 м; 1снеговой район; f/l=1/12; колонный двутавр 40К1из стали СЗ45;
- l=81 м; b=3 м; 4 снеговой район; f/l=1/14; колонный двутавр 40К2 из стали С345.
- 9. Оценить деформации жесткой нити II-го типа при следующих исходных данных:
- l = 72 м; b = 3 м; 3 снеговой район; f/l = 1/12; колонный двутавр 30К4 из стали C285;
- l =72 м; b =3 м; 4 снеговой район; f /l =1/14; колонный двутавр 30К3из стали С285;
- l=81 м; b=3 м; 1снеговой район; f/l=1/12; колонный двутавр 40К1из стали СЗ45;
- l=81 м; b=3 м; 4 снеговой район; f/l=1/14; колонный двутавр 40К2 из стали С345.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Классификация большепролетных покрытий. Особенности работы и конструирования.
- 2. Балочные конструкции. Преимущества и недостатки. Основные конструктивные схемы.
- 3. Рамные конструкции. Основные типы конструкций. Особенности многопролетных зданий.
- 4. Основные принципы проектирования предварительно напряженных конструкций. Предварительно напряженные балки. Предварительнонапряженные фермы. Использование предварительно напряженных обшивок.
- 5. Основные типы арочных конструкций их компоновка. Нагрузки на арочные конструкции.
- 6. Расчет арок. Конструирование сплошных и сквозных арок. Расчет опорных узлов
 - 7. Классификация куполов. Особенности нагрузок на купола.
- 8. Принципы проектирования ребристых, ребристо-кольцевых и ребристо-кольцевых куполов со связями.
 - 9. Сетчатые купола. Методы построения сетчатых куполов.
- 10. Методы расчета куполов и особенности оценки устойчивости их элементов.
- 11. Основные типы перекрестно-стержневых большепролетных по-крытий, методы их расчета.
 - 12. Основные типы структурных покрытий, методы их расчета.
- 13. Классификация висячих конструкций. Нагрузки и воздействия на висячие конструкции.
- 14. Основные конструктивные схемы одно- поясных висячих конструкций, методы их расчета.
 - 15. Двух- поясные висячие покрытия, методы их расчета
- 16. Особенности проектирования висячих и вантовых комбинированных конструкций.

7.2.5 Примерный перечень вопросов для экзамена

- 1. Основные виды и принципы проектирования мембранных покрытий.
- 2. Расчет мембраны. Инженерная методика. Конечно-элементные расчетные модели. Конструктивная нелинейность мембранных конструкций.
- 3. Расчет и конструирование опорного контура мембранного покрытия.
- 4. Классификация высотных сооружений. Материалы, используемые для сооружений подобного типа. Особенности нагрузок на высотные со-

оружения. Ветровая, гололедная и снеговая нагрузка.

- 5. Многоэтажные стальные каркасы. Классификация, особенности деформирования.
- 6. Особенности расчета и конструирования стальных многоэтажных каркасов рамного типа.
- 7. Особенности расчета и конструирования стальных многоэтажных каркасов связевого типа.
- 8. Проектирование узлов сопряжения элементов многоэтажных каркасов, а также опорных узлов.
- 9. Основные типы конструктивных схем сооружений башенного типа. Особенности ветровой нагрузки в башенных сооружениях.
- 10. Основные принципы расчета стержневых башен. Подбор и проверка сечения элементов башен.
- 11. Расчет и конструирование узлов сопряжения элементов башен и опорных узлов.
 - 12. Основные типы мачт. Используемые материалы.
- 13. Особенности напряженно-деформированного состояния мачт. Основные принципы расчета. Предварительное напряжение в мачтах.
- 14. Особенности конструирование ствола мачт 15. Проектирование узлов сопряжения элементов мачт и их опорных узлов.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет и экзамен проводится по тест - билетам, каждый из которых содержит 10 вопросов, 1 стандартную и 1 прикладную задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, стандартная задача оценивается в 5 баллов, прикладная - в 10 баллов. Максимальное количество набранных баллов — 25.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 8 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 8 до 12 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 13 до 18 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 19 до 25 баллов.

7.2.7 Паспорт оценочных материалов

	· · · · · · · · · · · · · · · · · · ·			
№ п/п	Контролируемые разделы	Код контролируемой	Наименование оценочного	
J 12 11/11	(темы) дисциплины	компетенции	средства	
1	Плоскостные конструкции	ПК-4, ПК-5	Тест, решение стандартных и	
	большого пролета: балки,	11IX-4, 11IX-3	профессионально ориентиро-	

	рамы и арки.		ванных задач, зачет
2	Стержневые пространственные и перекрестнобалочные системы. Своды и купола.	ŕ	Тест, решение стандартных и профессионально ориентированных задач, зачет
3	Висячие и вантовые конструкции. Комбинированные конструкции.	ПК-4, ПК-5	Тест, решение стандартных и профессионально ориентированных задач, зачет
4	Мембранные и тентовые покрытия. Пневматиче- ские конструкции	ПК-4, ПК-5	Тест, решение стандартных и профессионально ориентированных задач, наличие курсового проекта, экзамен
5	Каркасы многоэтажных и высотных зданий	ПК-4, ПК-5	Тест, выполнение и оформление лабораторных работ, решение прикладных задач, экзамен
6	Сооружения башенного и мачтового типа	ПК-4, ПК-5	Тест, выполнение и оформление лабораторных работ, зачет

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием тест-заданий на бумажном носителе. Время тестирования 20 мин. Зачет сдан, если студент верно ответил на 70% и более теоретических вопросов.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием задач, выданных на бумажном носителе. Время решения задач 20 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач до 30 мин.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе. Время защиты одного курсового проекта составляет 20 минут.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Металлические конструкции / под. ред. Ю. И. Кудишина.- М.: Издательский центр «Академия», 2005.- 675 с.
- 2. Металлические конструкции. В 3 т. Т.1 Элементы конструкций / под. ред. В. В. Горева.- М.: Высшая школа, 2006.- 551 с.
- 3. Металлические конструкции. В 3 т. Т.2 Конструкции зданий / под.ред. В. В. Горева. М.: Высшая школа, 2005.- 527.
 - 4. Металлические конструкции. В 3 т. Т.3 Специальные конструкции и

сооружения / под ред. В. В. Горева. - М.: Высшая школа, 2005.- 543 с. К-во экз.: 148 шт.

- 5. Металлические конструкции. Справочник проектировщика. В 3 т. Т.2. Стальные конструкции зданий и сооружений / под общ. ред. В.В. Кузнецова.- М.; АСВ, 1998.- 504 с.
- 6. Нагрузки и воздействия на здания и сооружения / под общ. ред. А. В. Перельмутера .- М.; ACB, 2007 . 476 с. К-во экз.: 20 шт.
- 7. Тур В.И. Купольные конструкции: формообразование, расчет, конструирование, повышение эффективности. М.; АСВ, 2004. 94 с. К-во экз.: 6 шт.
- 8. Справочные материалы для проектирования стальных конструкций / А. С. Щеглов, В. И. Щеглова, И. П. Сигаев. Воронежский ГАСУ, 2016.- 197 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 1. Microsoft Office Word 2013/2007
 - 2. Microsoft Office Excel 2013/2007
 - 3. Microsoft Office Power Point 2013/2007
 - 4. Microsoft Office Outlook 2013/2007
- 5. Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic (многопользовательская лицензия)
 - 6. Maple v18
 - 7. ABBYY FineReader 9.0
 - 8. Acrobat Professional 11.0 MLP
 - 9. Adobe connect
- 10.Microsoft Win SL 8.1 Russian Academic OPEN 1 License NP LEVEL Legalization GET Genuine
 - 11.Лира 9.6 PRO
 - 12.Мономах 4.5 PRO
 - 13.САПФИР 1.3
 - 14. Программный комплекс "ЛИРА 10", версия 8
- 15.Модуль поиска текстовых заимствований по коллекции научной электронной библиотеки eLIBRARY.RU
 - 16.AutoCAD
 - 17.3ds Max
 - 18.Revit
 - 19.BIM 360 Build
 - 20.Autodesk Civil 3D
 - 21."ЛИРА-САПР 2016 PRO"
 - 22.nanoCad Plus версия 8.0 локальная
 - 23.nanoCAD ОПС версия 8.0 сетевая
 - 24.7zip
 - 25. Компьютерная программа «СтройКонсультант»
 - 26.http://www.stroitel.club/
 - 27.http://stroitelnii-portal.ru/
 - 28.http://www.edu.ru/
 - 29. Образовательный портал ВГТУ

- 30.http://window.edu.ru
- 31.https://wiki.cchgeu.ru/
- 32.LibreOffice
- 33.http://www.edu.ru/
- 34. Образовательный портал ВГТУ
- 35.https://картанауки.рф/;
- 36.http://tehne.com/node/5728

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для реализации программы предусмотрены учебные аудитории (см. справку о материально-техническом обеспечении ОПОП ВО), обеспечивающие проведение лекционных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены современными компьютерными средствами с техническими возможностями для демонстрации изобразительного материала и мультимедийных презентаций. В качестве дополнительного материала используются учебно-наглядные пособия (тематические иллюстрации).

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронно-образовательную среду организации.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Расчет стальных строительных конструкций большепролетных и высотных зданий и сооружений» читаются лекции, проводятся практические занятия, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются профессионально важные теоретические вопросы, а также вопросы, не нашедшие отражения в учебной литературе. Изложение содержания сопровождается презентацией, графической работой на доске, демонстрацией учебных материалов, представленных в различных знаковых системах, в т. ч. иллюстративных, графических, аудио- и видеоматериалов.

Практические занятия направлены на приобретение практических навыков расчета стальных строительных конструкций. На практических занятиях студенты учатся выполнять расчеты стандартных и практически важных задач по разделам дисциплины.

Методика выполнения курсового проекта изложена в учебнометодическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки. Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

Вид учебных занятий	Деятельность студента
Лекция	Лекции должны быть записаны с принятыми сокращениями,
	сопровождаться схемами, чертежами, с выделением основных

	положений, выводов, формулировок, ключевых слов, терминов.
	Сложные термины следует проверять с помощью энциклопе-
	дий, словарей, справочников. Если самостоятельно не удается
	разобраться в материале, необходимо сформулировать вопрос и
	задать преподавателю на лекции или на практическом занятии.
Практическое	Работа с конспектом лекций, подготовка ответов к контроль-
занятие	ным вопросам, просмотр рекомендуемой литературы. Прослу-
	шивание аудио- и видеозаписей по заданной теме, решение
	стандартных и прикладных задач, работа со справочной литера-
	турой.
Самостоятельная работа	Предполагает изучение теоретического материала, подготовка к
	тестированию, подготовка к практическим занятиям, решение
	стандартных и прикладных задач, проверку полученных реше-
	ний и оформление решений в отдельной тетради, расчет и
	оформление пояснительной записки на листах стандартного
	формата А4, а также графической части курсовой работы.
Подготовка к	При подготовке к экзамену необходимо опираться на конспек-
промежуточной	ты лекций, рекомендуемую литературу, отработанные навыки
аттестации	решений прикладных задач по наиболее важным темам курса,
	знания, приобретенные при выполнении курсового проекта.