МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный технический университет» в городе Борисоглебске

РАБОЧАЯ ПРОГРАММА дисциплины (модуля) «Физика»

Направление подготовки 08.03.01 Строительство

Профиль Промышленное и гражданское строительство

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения Очная

 Год начала подготовки 2023 г.

 Автор(ы) программы
 Л.И. Матвеева

 Заведующий кафедрой
 Л.И. Матвеева

 Руководитель ОПОП
 Новиков М.В.

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цели дисциплины формирование у обучающихся методологической грамотности и системных знаний в области физики, позволяющих ориентироваться в потоке научно - технической информации, самостоятельно расширять свой физико-технический кругозор и успешно решать профессиональные задачи.

1.2 Задачи освоения дисциплины

- изучение законов физики в их взаимосвязи; формирование у обучающихся научного мировоззрения путем демонстрации теоретических и экспериментальных возможностей физики в познании окружающего мира;
- ознакомление с историей и логикой развития физики; раскрытие связи физики с техникой, формирование представления об опережающей роли науки на современном этапе развития техники;
- формирование представлений о модельном характере физической науки, о границах применимости физических законов и теорий;
- формирование умения соотносить явления в природе и технике с законами классической и современной физики;
- формирование навыков решения физических задач из разных областей физики, помогающих студентам в дальнейшем решать инженерные задачи;
- изучение назначения и принципов действия основных физических приборов; формирование навыков проведения экспериментальных исследований физических явлений, математической обработки результатов и грамотной их интерпретации.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина <u>«Физика»</u> относится к дисциплинам <u>обязательной части</u> блока Б.1 учебного плана.

3 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОПК-1 — Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

Компетенция	Результаты обучения, характеризующие сформированность компетенции				
ОПК-1	знать физические модели, законы, теории; границы их применимости; сущность теоретического и экспериментального методов исследования; единицы измерения физических величин и принципы действия важнейших физических приборов				
	уметь использовать физические понятия и законы для решения задач и анализа технических проблем, самостоятельно работать с источниками				

физико-технической информации, расширять свои физические познания
владеть навыками физического моделирования, проведения физиче-
ского эксперимента, обработки и интерпретации результатов изме-
рений

4 ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Физика» составляет 6 зачётных единиц. Распределение трудоемкости дисциплины по видам занятий

Вид учебной работы		Всего	Семестры	
		часов	1	2
Аудиторные занятия (всего)		108	54	54
В том числе:				
Лекции		36	18	18
Практические занятия (ПЗ)		36	18	18
Лабораторные работы (ЛР)		36	18	18
Самостоятельная работа		81	54	27
Курсовой проект (работа)				
Контрольная работа				
Вид промежуточной аттестации – зач	ле т,	27	1	27
экзамен			+	21
Общая трудоемкость	час	216	108	108
36	ач. ед.	6	3	3

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

110	видам заняти	4					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
		1 семестр		•	•	•	
1	Физические основы механики	Кинематика поступательного и вращательного движений. Динамика материальной точки и системы материальных точек. Работа и механическая энергия. Закон сохранения энергии. Механика твердого тела. Тяготение. Неинерциальные системы отсчета. Силы инерции. Механика упругих тел. Элементы специальной теории относительности.	8	8	8	20	44
2	Механические ко- лебания и волны	Кинематика и динамика гармонических колебаний. Собственные, затухающие, вынужденные колебания осциллятора. Сложение гармонических колебаний. Механические волны. Уравнение бегущей волны. Стоячие волны. Эффект Доплера в акустике.	4	4	4	14	26
3	Молекулярная физика и термодина- мика	Макросистемы и методы их опи- сания. Основные положения МКТ и их обоснование. Идеальный газ, газовые	6	6	6	20	38

		законы, уравнение состояния. Основное					
		уравнение МКТ. Распределение Максвел-					
		ла. Идеальный газ во внешнем потенци-					
		альном поле. Распределение Больцмана.					
		Явления переноса в неравновесных					
		термодинамических системах.					
		Термодинамические параметры.					
		Функции состояния и процесса. Внут-					
		ренняя энергия, работа, теплота. Первое					
		начало термодинамики. Применение					
		первого начала к изопроцессам. Эн-					
		тропия. Второе начало термодинамики.					
		Реальный газ. Свойства жидкого					
		состояния вещества. Аморфные и кри-					
		сталлические тела.	10	10	10		100
		Итого за 1 семестр	18	18	18	54	108
4	7	2 семестр			Ī	Ī	
4	Электромагнетизм	Электрическое поле в вакууме и его					
		характеристики. Теорема Гаусса и при-					
		менение ее для расчета электростатиче-					
		ских полей. Электрическое поле в ди-					
		электрике и проводнике. Электрический ток: сила тока, плот-					
		ность тока. Законы постоянного элек-					
		трического тока. Правила Кирхгофа.					
		Электрический ток в различных средах.					
		Вектор индукции магнитного поля.					
		Закон Био-Савара-Лапласа. Линии маг-					
		нитной индукции. Поле прямого тока.					
		Поле на оси кругового тока. Магнитный					
		момент контура с током.					
		Магнитное поле проводника с током.					
		Закон Био-Савара-Лапласа и его исполь-					
		зование для расчета магнитных полей.		8	8	10	34
		Магнитное поле движущегося заряда.					
		Действие магнитного поля на движу-					
		щийся заряд. Ускорители частиц. Эффект					
		Холла.					
		Магнитное поле в веществе. Диа- па-					
		ра- и ферромагнетики.					
		Электромагнитная индукция. Само-					
		индукция. Взаимная индукция.					
		Колебательный контур. Свободные,					
		затухающие и вынужденные колебания.					
		Усилители и автогенераторы электро-					
		магнитных колебаний.					
		Переменный ток. Мощность пере-					
		менного тока.					
		Электромагнитная теория Максвелла.					
5	Оптика	Свет как электромагнитная волна.					
		Фотометрия. Энергетические и фотометринеские велиции и единиции и					
		метрические величины и единицы их измерения.					
		Интерференция света. Когерентность.					
		Расчет интерференционной картины от					
		двух когерентных источников. Интерфе-					
		ренция многих волн. Интерферометры.		6	6	10	28
		Просветление оптики.					
		Просветление оптики. Дифракция света. Принцип Гюйген-					
		са-Френеля. Метод зон Френеля. Прямо-					
		линейное распространение света. Ди-					
		фракция Фраунгофера на щели и на ди-					
		фракционной решетке. Дифракционная					
		туриналогиот решетке. Дифракционная	1		<u> </u>	<u> </u>	

Практическая подготовка при освоении дисциплины учебным планом не предусмотрена.

5.2 Перечень лабораторных работ

1.1. Изучение погрешностей измерения ускорения свободного падения с помощью математического маятника

- 1.2. Определение коэффициента вязкости жидкости методом Стокса.
- 1.3. Изучение законов вращательного движения на маятнике Обербека.
- 2.1. Изучение свободных и затухающих колебаний пружинного маятника.
- 2.2. Определение скорости звука методом стоячих волн.
- 3.1. Определение коэффициента вязкости воздуха
- 3.2. Определение отношения теплоемкостей газа методом адиабатического расширения.
 - 3.3. Определение абсолютной и относительной влажности воздуха.
 - 4.1. Изучение закона Ома.
 - 4.2. Исследование электростатического поля.
- 4.3. Определение горизонтальной составляющей индукции магнитного поля Земли.
 - 4.4. Изучение магнитных свойств ферромагнетиков.
 - 5.1. Интерференция света. Опыт Юнга
- 5.2. Изучение дифракции света на одиночной щели и дифракционной решетке.
 - 5.3. Изучение законов внешнего фотоэффекта.
 - 6.1. Изучение оптических спектров излучения атома водорода.
 - 6.2. Изучение закона радиоактивного распада.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) и контрольных работ.

7 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧ-НОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован	
ОПК-1	модели, законы,	даний. Аргументирован- ность ответов на теорети- ческие вопросы при защите лабораторных работ	предусмотренный в рабочих программах. Количество правильных ответов в тестовых заданиях более 40%. Подготовлены ответы на теоретические вопросы при защите лабо-	Невыполнение работ в срок, предусмотренный в рабочих программах. Количество правильных ответов в тестовых заданиях менее 40%. Отсутствие отчетов о выполнении лабораторных работ, нарушение графика защит.	

зических приборов			
физические понятия и законы для реше- чил задач и анализа технических проблем, самостоятель-	гических и лабораторных занятиях. Выполнение ин- данятиях. Выполнение ин- дивидуальных заданий по решению задач. Подготовка реферата или презентации на заданную тему. Выпол- нение лабораторных работ.	предусмотренный в рабочих программах. Индивидуальные задания выполнены, представлены решения 60% и более задач. Представлен реферат (презентация) на заданную тему. Выполнены все лабора-	Невыполнение работ в срок, предусмотренный в рабочих программах. Представлены решения менее 60% задач в индивидуальных заданиях. Не представлен реферат (презентация). Выполнены не все лабораторные работы, предусмотренные рабочей программой.
физического моде- лирования, прове- ления физического	тических и лабораторных занятиях. Оформление от- четов и защита лаборатор- ных работ	предусмотренный в рабочих программах. Посещение практических и лабораторных занятий. Своевременное оформление	Невыполнение работ в срок, предусмотренный в рабочих программах. Частичное посещение или отсутствие на практических и лабораторных занятиях. Отсутствие отчетов о выполнении лабораторных работ, нарушение графика защит.

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 1 семестре по системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность ком- петенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-1	знать физические мо- дели, законы, теории; границы их приме- нимости; сущность теоретического и экспериментального методов исследова- ния; единицы изме- рения физических величин и принципы действия важнейших физических приборов	Защита всех выполненных лабораторных работ Тест	Все лабораторные работы защищены Выполнение теста на 70-100%	Не все лабораторные работы защищены Выполнение менее 70%
		Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	владеть навыками физического моделирования, проведения физического эксперимента, обработки и интерпретации результатов измерений	Выполнение всех лабора- торных работ Решение прикладных задач в конкретной пред- метной области	Выполнены все предусмот- ренные рабочей программой лебораторные работы Продемонстрирован верный ход решения в большинстве задач	работы выполнены Задачи не решены

Результаты промежуточного контроля знаний оцениваются во 2 семестре по системе:

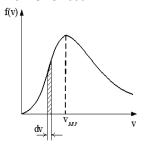
«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность ком- петенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	знать физические мо- дели, законы, теории; границы их приме- нимости; сущность теоретического и экспериментального методов исследова- ния; единицы изме- рения физических величин и принципы действия важнейших физических приборов	тестовых за- даний	и более	е теста на 80 – 90%	Выполнение теста на 60- 80%	В тесте менее 60% правильных ответов
	уметь использовать физические понятия и законы для решения задач и анализа технических проблем, самостоятельно работать с источниками физико-технической информации, расширять свои физические познания	стандартных практических	шены в пол- ном объеме и получены	ирован верный ход решения	ирован в основном верный ход решения, но допущены ошибки в формулах, что приводит к неверному резуль-	1
	владеть навыками физического моделирования, проведения физического эксперимента, обработки и интерпретации результатов измерений	прикладных	шены в пол- ном объеме и получены	ирован верный ход решения	ирован в основном верный ход решения, но допущены ошибки в формулах, что приводит к неверному резуль-	•

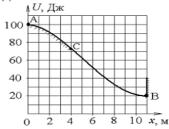

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Сплошной и полый цилиндры, имеющие одинаковые массы и радиусы, вкатываются без проскальзывания на горку. Если начальные скорости тел одинаковы, то...
 - 1) выше поднимется полый цилиндр;
 - 2) выше поднимется сплошной цилиндр;
 - 3) оба поднимутся на одну и ту же высоту.
- 2. Физические явления в одинаковых условиях протекают одинаково во всех инерциальных системах отсчета это принцип ...
 - 1) относительности;

- 2) соответствия;
- 3) независимости;
- 4) дополнительности.

3.На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где f(v)=dN/(Ndv)- доля молекул, скорости которых заключены в интервале скоростей от v до v+dv в расчете на единицу этого интервала. Для этой функции верным утверждением является...



- 1) с увеличением температуры величина максимума уменьшается;
- 2) при изменении температуры площадь под кривой не изменяется;
- 3) при изменении температуры положение максимума не изменяется.
- 4. При адиабатическом расширении идеального газа...
- 1) температура понижается, энтропия не изменяется;
- 2) температура понижается, энтропия возрастает;
- 3) температура и энтропия не изменяются;
- 4) температура и энтропия возрастают.
- 5. Вектор напряженности электростатического поля всегда направлен
- 1) в сторону возрастания потенциала,
- 2) в сторону убывания потенциала,
- 3) в сторону возрастания либо убывания потенциала.
- 6. Если воздушный конденсатор отключить от источника, а затем заполнить диэлектриком, то ...
- 1) напряжение между обкладками не изменится, заряд на обкладках увеличится;
 - 2) емкость увеличится, напряжение между обкладками не изменится;
 - 3) емкость уменьшится, заряд на обкладках увеличится;
 - 4) емкость увеличится, заряд на обкладках не изменится.
- 7. В электростатическом поле электрон переместился из точки с потенциалом 100 В в точку с потенциалом 101 В. Какую работу при этом совершило электростатическое поле?
 - 1) 1 Дж, 2) 1.6·10⁻¹⁹ Дж, 3) 1.6·10⁻¹⁹ Дж.
- 8. На рисунке показана зависимость магнитной проницаемости μ от напряженности внешнего магнитного поля H для ...
 - 1) диамагентика;
 - 2) любого магнетика;
 - 3) парамагнетика;
 - 4) ферромагнетика.
- 9. Через контур, индуктивность которого L=0,02 Гн, течет ток, изменяющийся по закону I=0,5 $\sin 500t$. Амплитудное значение ЭДС самоиндукции, возникающей в контуре, равно ...
 - 1) 0,5 B;

- 2) 500 B;
- 3) 0,01 B;
- 4) 5 B.
- 10. Складываются два гармонических колебания одного направления с одинаковыми частотами и равными амплитудами A_0 . При разности фаз $\Delta \varphi = \frac{\pi}{2}$ амплитуда результирующего колебания равна ...
 - 1) $2A_0$;
 - 2) $A_0\sqrt{2}$;
 - 3) 0;
 - 4) $A_0 \sqrt{3}$.

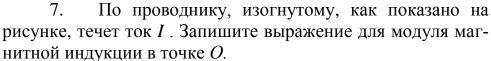
7.2.2 Примерный перечень заданий для решения стандартных задач

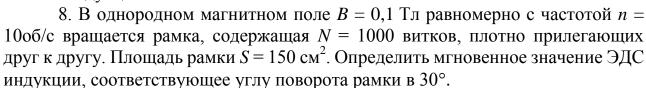
- 1. На наклонной плоскости покоится брусок. Если постепенно увеличивать угол между плоскостью и горизонтом, то при величине этого угла, равной 30° брусок начинает скользить. Коэффициент трения скольжения при этом равен...
 - $\sqrt{3}$; 2) $\frac{\sqrt{3}}{2}$; 3) $1/\sqrt{3}$; 4) 0,5.
- 2. На неподвижный бильярдный шар налетел другой такой же со скоростью v=1v/c. После удара шары разлетелись под углом 90° так, что импульс одного шара $P_1=0,3$ кгм/с, а другого $P_2=0,4$ кгм/с. Массы шаров равны...
 - 0,2 кг; 2) 1 кг, 3) 0,1 кг; 4) 0,5 кг.
- 3. С ледяной горки с небольшим шероховатым участком АС из точки А без начальной скорости скатывается тело. Сопротивление воздуха пренебрежимо мало. Зависимость потенциальной энергии шайбы от координаты х изображена на графике U(x). При движении сила трения совершила работу 20 Дж. После абсолютно неупругого удара тела со стеной в точке В выделилось...

- 1) 80 Дж тепла;
- 2) 60 Дж тепла;
- 3) 100 Дж тепла;
- 4) 120 Дж тепла.
- 4. Диаграмма циклического процесса идеального одноатомного газа представлена на рисунке. Отношение работы за весь цикл к работе при охлаждении газа равно...

500

- 2) 5;
- 3) 3;
- 4) 2,5.
- 5. В процессе изотермического сообщения тепла постоянной массе идеального газа его энтропия ...
 - 1) увеличивается;
 - 2) уменьшается;


- 3) не меняется
- 6. В электростатическом поле электрон переместился из точки с потенциалом 100 В в точку с потенциалом 101 В. Какую работу при этом совершило электростатическое поле?
 - 1) 1 Дж, 2) 1.6·10⁻¹⁹ Дж,3) 1.6·10⁻¹⁹ Дж.
- 7. Через контур, индуктивность которого L=0,02 Гн, течет ток, изменяющийся по закону I=0,5 \sin 500t. Амплитудное значение ЭДС самоиндукции, возникающей в контуре, равно ...
 - 1) 0,5 B;
 - 2) 500 B;
 - 3) 0,01 B;
 - 4) 5 B.
- 8. Складываются два гармонических колебания одного направления с одинаковыми частотами и равными амплитудами A_0 . При разности фаз $\Delta \varphi = \frac{\pi}{2}$ амплитуда результирующего колебания равна ...
 - 1) $2A_0$;
 - 2) $A_0\sqrt{2}$;
 - 3) 0;
 - 4) $A_0^{\sqrt{3}}$.
- 9. Красная граница фотоэффекта для лития находится в видимой области спектра и составляет примерно 0,52 мкм. Какова работа выхода электрона из этого металла?
 - 1) $4,2 \ni B;$
 - 2) 2,4 9B;
 - 3) 1,2 3B;
 - 4) 8,4 3B.
- 10. Вычислите энергию фотона, соответствующего излучению с длиной волны λ = 600 нм
 - 1) 2,9 эВ
 - 2) 20,7 ₃B
 - 3) 2,1 эВ
 - 4) 3,0 эВ


7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Два колеса начинают вращаться одновременно. Через t=10 с второе опережает первое на полный оборот. Определите угловое ускорение второго колеса, если угловое ускорение первого равно $\varepsilon_1 = 0,1$ с⁻². Сколько оборотов сделает каждое колесо за t=20 с?
- 2. Вагон массой 40 т движется на упор со скоростью 0,1 м/с. При полном торможении вагона буферные пружины сжимаются на 10 см. Определить максимальную силу сжатия буферных пружин и продолжительность торможения.
- 3. В баллонах вместимостью V_1 = 20 л и V_2 = 44 л содержится газ. Давление в первом баллоне p_1 = 2,4 МПа, во втором p_2 = 1,6 МПа. Определить общее

давление р и парциальные давления $p_1^{'}$ и $p_2^{'}$ после соединения баллонов, если температура газа осталась прежней.

- 4. Определить давление воздуха (в мм рт. ст.) в воздушном пузырьке диаметром d=0,01 мм, находящемся на глубине h=20 см под поверхностью воды. Внешнее давление принять равным p_1 =765 мм рт. ст.
- 5. На пластинах плоского конденсатора находится заряд $10 \, \text{нКл}$. Площадь каждой пластины конденсатора равна $100 \, \text{см}^2$, диэлектрик воздух. Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным
- 6. На схеме, представленной на рисунке, $R_1 = R$, $R_2 = 2R$, $R_3 = 3R$, $R_4 = 4R$. Емкость конденсатора равна C. Определить заряд на конденсаторе, если напряжение на батарее U_0 .

- 9. Колебательный контур имеет емкость C = 1,1 нФ и индуктивность L = 5 мГн. Логарифмический декремент затухания равен 0,005. За какое время вследствие затухания потеряется 99 % энергии колебаний в контуре?
- 10. В колебательном контуре, ёмкость конденсатора которого равна 20 мкФ, происходят собственные электромагнитные колебания. Зависимость напряжения на конденсаторе от времени для этого колебательного контура имеет вид $U = U_0 \cdot \cos(500t)$ где все величины выражены в единицах СИ. Какова индуктивность катушки в этом колебательном контуре?
- 11. В просветленной оптике для устранения отражения света на поверхность линзы наносится тонкая пленка вещества с показателем преломления (n = 1,26) меньшим, чем у стекла. При какой наименьшей толщине пленки отражение света от линзы не будет наблюдаться? Длина волны падающего света 0,55 мкм, угол падения 30^{0} .
- 12. Мощность излучения лазерной указки с длиной волны λ = 600 нм равна P=2 мВт. Определите число фотонов, излучаемых указкой за 1 с.
- 13. Давление света от Солнца, который падает перпендикулярно на абсолютно черную поверхность, на орбите Земли составляет примерно $p=5\cdot 10^{-6}$ Па. Оцените концентрацию фотонов в солнечном излучении, если их длина волны $\lambda=500$ нм.
- 14. Фотокатод облучают светом с длиной волны 300 нм. Красная граница фотоэффекта фотокатода 450 нм. Вычислите запирающее напряжение U между анодом и катодом.
- 15. В образце, содержащем большое количество атомов висмута $^{212}_{83}Bi$ через 1 час останется половина начального количества атомов.

7.2.4 Примерный перечень вопросов для подготовки к экзамену 2 семестр

- 1. Электростатика, закон Кулона, напряженность и потенциал электростатического поля. Работа поля по перемещению электрического заряда. Потенциальный характер электростатического поля.
- 2. Поток вектора напряженности электростатического поля. Теорема Гаусса для электростатического поля в вакууме и ее применения для расчета напряженности поля.
- 3. Диэлектрики в электрическом поле. Диэлектрическая восприимчивость и проницаемость диэлектрика. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- 4. Проводники в электрическом поле, электроемкость, соединение конденсаторов. Энергия электростатического поля.
- **5.** Постоянный электрический ток. Сила и плотность тока. Закон Ома. Закон Джоуля-Ленца. Мощность тока.
- **6.** Классическая электронная теория проводимости металлов. Закон Ома в дифференциальной форме. Зависимость сопротивления металлического проводника от температуры. Явление сверхпроводимости.
- 7. Магнитное поле. Магнитная индукция. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей. Магнитные поля прямого и кругового токов.
 - 8. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.
- 9. Закон Ампера. Сила Лоренца. Движение заряженной частицы в однородном магнитном поле. Эффект Холла.
- 10. Магнитное поле в веществе. Типы магнетиков. Диамагнетизм и парамагнетизм. Ферромагнетизм.
- 11. Электромагнитная индукция. Закон Фарадея. Правило Ленца. Самоиндукция. Индуктивность соленоида. Взаимная индукция. Принцип работы трансформатора и его применение. Энергия магнитного поля.
- 12. Индукционный ток в неподвижных проводниках. Вихревое электрическое поле. Электромагнитное поле. Токи смещения. Система уравнений Максвелла для электромагнитного поля.
 - 13. Электромагнитные волны. Шкала электромагнитных волн.
- 14. Свет как электромагнитная волна. Интерференция света. Условия максимума и минимума интерференции. Способы получения когерентных световых волн.
- 15. Дифракция света. Принцип Гюйгенса-Френеля. Метод Френеля. Прямолинейность распространения света.
 - 16. Дифракция Фраунгофера на щели. Дифракционная решётка.
- 17. Тепловое излучение, его характеристики. Закон Кирхгофа. Абсолютно черное тело. Экспериментальные законы теплового излучения. Несостоятельность классической теории излучения. Гипотеза Планка. Формула Планка для испускательной способности абсолютно черного тела.

- 18. Виды фотоэффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна. Применение фотоэффекта.
- 19. Фотон. Масса и импульс фотона. Давление света и его объяснение с квантовых позиций.
- 20. Эффект Комптона как подтверждение квантовой природы света. Дуализм света.
- 21. Корпускулярно-волновой дуализм свойств вещества. Длина волн де Бройля. Практическое применение волновых свойств частиц.
- 22. Соотношение неопределённостей Гейзенберга. Принцип дополнительности Бора.
- 23. Волновая функция, её свойства. Общее и стационарное уравнения Шредингера.
- 24. Простейшие задачи квантовой механики. Движение свободной частицы. Частица в одномерной потенциальной яме с бесконечно высокими стенками. Туннельный эффект.
- 25. Полуклассическая теория атома Бора, ее ограниченность. Излучение энергии атомом. Излучательные серии атома водорода. Квантовомеханическая модель атома водорода. Квантовые числа. Правила отбора.
- 26. Магнитный момент атома. Спин электрона. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Периодичность свойств химических элементов.
- 27. Понятие о зонной теории твердого тела. Классификация кристаллов на основе зонной теории. Проводники, диэлектрики и полупроводники.
- 28. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра.
- 29. Естественная и искусственная радиоактивность. Статистический закон радиоактивного распада. Виды радиоактивного излучения. Ядерные реакции
- 30. Общие свойства и характеристики элементарных частиц. Фундаментальные взаимодействия. Классификация элементарных частиц.

7.2.5 Примерный перечень вопросов для подготовки к зачету 1 семестр

- 1. Инерциальные системы отсчета. Кинематика поступательного и вращательного движений материальной точки. Перемещение, скорость и ускорение, нормальное и тангенциальное ускорения.
 - 2. Законы Ньютона. Силы в механике. Закон сохранения импульса.
- 3. Механическая работа. Работа и изменение кинетической энергии. Потенциальная энергия. Консервативные и неконсервативные силы. Закон сохранения энергии в механике.
- 4. Абсолютно твердое тело, угловые перемещения, скорость, ускорение. Связь характеристик вращательного и поступательного движения.
- 5. Момент инерции. Теорема Штейнера. Моменты инерции тел правильной формы.
 - 6. Моменты силы относительно точки и относительно оси. Уравнение

динамики вращательного движения твердого тела относительно неподвижной оси.

- 7. Моменты импульса относительно неподвижной точки и неподвижной оси. Закон сохранения момента импульса.
- 8. Закон всемирного тяготения. Сила тяжести и вес тела. Поле тяготения. Напряженность и потенциал поля тяготения. Космические скорости.
 - 9. Неинерциальные системы отсчета, силы инерции.
- 10. Специальная теория относительности, преобразования Лоренца, следствия из преобразований Лоренца. Релятивистский закон сложения скоростей, импульс. Взаимосвязь массы и энергии.
- 11. Колебания. Периодические колебания. Смещение и амплитуда колебания. Гармонические колебания. Дифференциальное уравнение гармонического колебания. Физический и математический маятники.
- 12. Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний. Апериодическое движение.
- 13. Дифференциальное уравнение вынужденных механических колебаний. Вид решения. Амплитуда и начальная фаза вынужденных колебаний. Явление механического резонанса.
- 14. Волновое движение. Волны поперечные и продольные. Длина волны и скорость распространения волн. Уравнение плоской бегущей монохроматической волны. Дифференциальное уравнение волны.
 - 15. Интерференция механических волн.
- 16. Идеальный газ. Основное уравнение МКТ. Уравнение состояния идеального газа. Законы идеального газа.
- 17. Энергия молекулы идеального газа, распределение энергии по степеням свободы. Распределение молекул идеального газа по скоростям (распределение Максвелла). Распределение Больцмана.
- 18. Длина свободного пробега. Теплопроводность, диффузия, вязкость (внутреннее трение).
- 19. Внутренняя энергия термодинамической системы. Работа газа при изменении объема. Количество теплоты.
- 20. Первое начало термодинамики и его применение для различных термодинамических процессов. Уравнение адиабаты.
 - 21. Политропические процессы. Показатель политропы.
- 22. Тепловые машины, их термический к.п.д. Принцип Карно, идеальная тепловая машина. Теоремы Карно.
- 23. Второе начало термодинамики. Энтропия, ее статистический характер.
- 24. Реальные газы, уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Сжижение газов.
 - 25. Фазовые переходы. Уравнение Клапейрона-Клаузиуса.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен и зачет с оценкой проводятся по тест-билетам, каждый из кото-

рых содержит 10 вопросов и две задачи. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задачи оцениваются максимально в 4 и 6 баллов. Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 11 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 11 до 15 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 16 до 18 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал 19 20 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Физические основы механики	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена
2	Механические колебания и волны	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена
3	Молекулярная физика и тер- модинамика	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена
4	Электромагнетизм	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена
5	Оптика	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена
6	Элементы квантовой физики	ОПК-1	Тест, индивидуальные задания по решению стандартных и прикладных задач, контрольные вопросы для защиты лабораторных работ, контрольно-измерительные материалы для экзамена

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование (по теме или итоговое) осуществляется, либо при помощи компьютерной системы тестирования (в семестре), либо с использованием тест-заданий на бумажном носителе. Время тестирования 60 минут. Затем осуществляется проверка теста (автоматически программой) или экзаменатором и выставляется оценка согласно приведенным выше критериям. Тесты содержат задачи различных уровней сложности.

К каждой лабораторной работе предложены контрольные вопросы и задачи по соответствующему разделу программы. Ответы на контрольные вопросы и решения задач студент должен подготовить дома. На занятии ведется устный опрос по теоретическим вопросам и решениям задач.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Волькенштейн В.С. Сборник задач по общему курсу физики. СПб. : Книжный мир, 2005. 328 с.
- 2. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.1 : Механика. М. : Астрель: АСТ, 2005. 336 с. : ил. ISBN 5-17-002963-2.
- 3. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн. 3 : Молекулярная физика и термодинамика. М. : Астрель: АСТ, 2005. 208 с. : ил. ISBN 5-17-004585-9.
- 4. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.2 : Электричество и магнетизм. М. : Астрель: АСТ, 2005. 336 с. : ил. ISBN 5-17-003760-0.
- 5. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.4 : Волны. Оптика. М. : Астрель: АСТ, 2005. 256 с. : ил. ISBN 5-17-004586-7.
- 6. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн. 5 : Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. М. : Астрель: АСТ, 2005. 368 с. ISBN 5-17-004587-5.
- 7. Трофимова, Т.И. Курс физики : учеб. пособие. 8-е изд., стереотип. М. : Высш. шк., 2004. 544 с. : ил. ISBN 5-06-003634-0
- 8. Механика. Молекулярная физика и термодинамика. Электричество и магнетизм. Колебания и волны. Оптика. Элементы квантовой механики, атомной и ядерной физики [Электронный ресурс]: метод. указ. и контр. задания по физике для студ. всех спец. фак. дистанц. обучения: в 2 ч. Ч. 1, 2 / Воронеж. гос. архит. строит. ун-т; сост.: А. К. Тарханов, А. И. Никишина, Ю. С. Золототрубов. Воронеж: [б. и.], 2011. 1 электронно-опт. диск.
- 9. Механика: методические указания к выполнению лабораторных работ по дисциплине «Физика» для бакалавров машиностроительных и других тех-нических направлений очной и заочной форм обучения [Электронный ре-

- сурс]/ Т. В. Зульфикарова; Борисоглебск: Филиал ФГБОУ ВО «Воронежский государственный техниче-ский университет»; сост.: Т. В. Зульфикарова. Воронеж: Изд-во ВГТУ, 2021. 29 с.— Режим доступа: 453-2021 Механика
- 10. Молекулярная физика и термодинамика: методические указания к вы-полнению лабораторных работ по дисциплине «Физика» для студентов техни-ческих направлений очной и заочной форм обучения [Электронный ресурс]/ Т. В. Зульфикарова, Л. И. Матвеева; Борисоглебск: Филиал ФГБОУ ВО «Воронежский государственный технический университет», сост.: Т. В. Зульфикарова, Л. И. Матвеева. Воро-неж: Изд-во ВГТУ, 2021. 29 с.— Режим доступа: 455-2021 Молекулярная физика и термодинамика
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень ПО, включая перечень лицензионного программного обеспечения:

OC Windows 7 Pro;

Google Chrome;

Microsoft Office 64-bit

Ресурсы информационно-телекоммуникационной сети «Интернет»:

http://window.edu.ru - единое окно доступа к информационным ресурсам;

<u>http://www.edu.ru/</u> – федеральный портал «Российское образование»;

Образовательный портал ВГТУ;

http://www.iprbookshop.ru/ — электронная библиотечная система IPRbooks; www.elibrary.ru — научная электронная библиотека

Профессиональные базы данных, информационные справочные системы:

<u>https://studopedia.ru</u> – информационный сайт для студентов разных предметных областей

<u>https://www.osa.org/en-us/home/</u> – информационный веб-сайт по оптике и фотонике

<u>http://elib.biblioatom.ru/</u> – электронная библиотека «История Росатома» https://www.electrical4u.com/ – Electrical 4U – информационно-обучающий сайт «Изучайте электротехнику» (содержит обучающие материалы по разделу «Квантовая физика»)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная аудитория для проведения учебных занятий (лекционных и практических занятий), оснащенная следующим оборудованием:

- персональный компьютер с установленным ΠO , подключенный к сети Интернет;
 - мультимедийный проектор;
 - экран переносной;

- магнитно-маркерная доска;
- учебно-наглядные пособия, обеспечивающие тематические иллюстрации.

Учебная аудитория для проведения учебных занятий (лабораторных занятий), оснащенная следующим оборудованием:

- персональные компьютеры с установленным ПО, подключенные к сети Интернет 15 шт.;
 - мультимедийный проектор;
 - экран настенный;
 - магнитно-маркерная доска;
 - штативы с держателями;
 - штангенциркули;
 - микрометры;
 - секундомеры механические и электронные;
 - машина Атвуда;
 - маятники: нитяной, Максвелла, Обербека;
 - установка для определения вязкости жидкости методом Стокса;
 - трифилярный подвес с набором дисков;
 - гироскоп;
 - физический и упругий маятники;
 - звуковые генераторы;
- стенды для выполнения лабораторного практикума по молекулярной физике и термодинамике;
 - насос Камовского;
 - калориметры;
 - барометр-анероид;
 - психрометры;
 - амперметры;
 - мультиметры;
 - прибор электроизмерительный многофункциональный 43101;
 - ваттметр;
 - магазины сопротивлений измерительные;
 - блоки питания ИЭПП-2;
 - стенд для измерения тока зарядки/разрядки конденсатора;
 - мостик Соти;
 - стенд для исследования параметров простейших электрических цепей;
 - набор катушек индуктивности;
 - осциллографы двухканальные МЕГЕОН 15022;
 - стенд для исследования электромагнитных колебаний;
- типовой комплект учебного оборудования «Полупроводниковые приборы» ПП-MP;
 - измеритель освещенности ДТ-1301;
 - источники света;

- установка для наблюдения колец Ньютона;
- установка для наблюдения дифракции света на дифракционной решетке;
 - поляризаторы;
 - оптический пирометр;
 - стенд для исследования внутреннего и внешнего фотоэффекта;
 - спектрометр;
 - стенд для исследования явления радиоактивности;
 - прибор электроизмерительный многофункциональный 43101

Помещение (Читальный зал) для самостоятельной работы с выходом в сеть «Интернет» и доступом в электронно-библиотечные системы и электронно-информационную среду, укомплектованное следующим оборудованием:

- персональные компьютеры с установленным ΠO , подключенные к сети Интернет $10~\mathrm{mr.}$;
 - принтер;
 - магнитно-маркерная доска;
 - переносные колонки;
 - переносной микрофон.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По дисциплине «Физика» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение навыков решения задач. Занятия проводятся путем решения конкретных задач в аудитории. Рассматриваются основные типы задач и методы их решения.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в методических указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки, обобщения;
	помечать важные мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов, терминов,
	материала, которые вызывают трудности, поиск ответов в рекомендуемой
	литературе. Если самостоятельно не удается разобраться в материале,
	необходимо сформулировать вопрос и задать преподавателю на лекции
	или на практическом занятии.
Практическое	Практические занятия направлены на приобретение практических на-
занятие	выков решения задач. Занятия проводятся путем решения конкретных при-

	меров задач в аудитории. Рассматриваются основные типы задач и методы их			
	решения.			
Лабораторная	Лабораторные работы направлены на приобретение навыков проведения			
работа	физического эксперимента, обработки результатов, оценки погрешности из-			
	мерений. На занятиях лабораторного практикума идет практически индиви-			
	дуальная работа с каждым студентом. Студенты получают эксперименталь-			
	ные подтверждения изучаемых физических законов. Обсуждаются и анали-			
	зируются полученные результаты. В ряде случаев проводятся исследования			
	физических явлений с использованием компьютерного моделирования. Перед			
	выполнением работы проверяется готовность студента к ее выполнению, а			
	после оформления работы проводится ее защита.			
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвое-			
работа	нию учебного материала и развитию навыков самообразования. Само-			
	стоятельная работа предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной			
	литературой, с конспектами лекций;			
	- выполнение домашних заданий по решению задач;			
	- работа над темами для самостоятельного изучения;			
	- участие в студенческих научных конференциях, олимпиадах;			
	- подготовка к промежуточной аттестации.			
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в			
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не			
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Три дня,			
	данные перед экзаменом, зачетом с оценкой, эффективнее всего исполь-			
	зовать для повторения и систематизации материала.			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	2	3	4
1			
2			